Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 568(7750): 122-126, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30867595

RESUMO

Pericyclic reactions are powerful transformations for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. Their role in biosynthesis is increasingly apparent, and mechanisms by which pericyclases can catalyse reactions are of major interest1. [4+2] cycloadditions (Diels-Alder reactions) have been widely used in organic synthesis2 for the formation of six-membered rings and are now well-established in biosynthesis3-6. [6+4] and other 'higher-order' cycloadditions were predicted7 in 1965, and are now increasingly common in the laboratory despite challenges arising from the generation of a highly strained ten-membered ring system8,9. However, although enzyme-catalysed [6+4] cycloadditions have been proposed10-12, they have not been proven to occur. Here we demonstrate a group of enzymes that catalyse a pericyclic [6+4] cycloaddition, which is a crucial step in the biosynthesis of streptoseomycin-type natural products. This type of pericyclase catalyses [6+4] and [4+2] cycloadditions through a single ambimodal transition state, which is consistent with previous proposals11,12. The [6+4] product is transformed to a less stable [4+2] adduct via a facile Cope rearrangement, and the [4+2] adduct is converted into the natural product enzymatically. Crystal structures of three pericyclases, computational simulations of potential energies and molecular dynamics, and site-directed mutagenesis establish the mechanism of this transformation. This work shows how enzymes are able to catalyse concerted pericyclic reactions involving ambimodal transition states.


Assuntos
Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Reação de Cicloadição , Enzimas/metabolismo , Lactonas/química , Lactonas/metabolismo , Cristalografia por Raios X , Teoria da Densidade Funcional , Enzimas/química , Enzimas/genética , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
2.
Nat Commun ; 12(1): 2092, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828077

RESUMO

Streptoseomycin (STM, 1) is a bacterial macrolactone that has a unique 5/14/10/6/6-pentacyclic ring with an ether bridge. We have previously identified the biosynthetic gene cluster for 1 and characterized StmD as [6 + 4]- and [4 + 2]-bispericyclase that catalyze a reaction leading to both 6/10/6- and 10/6/6-tricyclic adducts (6 and 7). The remaining steps, especially how to install and stabilize the required 10/6/6-tricyclic core for downstream modifications, remain unknown. In this work, we have identified three oxidoreductases that fix the required 10/6/6-tryciclic core. A pair of flavin-dependent oxidoreductases, StmO1 and StmO2, catalyze the direct hydroxylation at [6 + 4]-adduct (6). Subsequently, a spontaneous [3,3]-Cope rearrangement and an enol-ketone tautomerization result in the formation of 10/6/6-tricyclic intermediate 12b, which can be further converted to a stable 10/6/6-tricyclic alcohol 11 through a ketoreduction by StmK. Crystal structure of the heterodimeric complex NtfO1-NtfO2, homologues of StmO1-StmO2 with equivalent function, reveals protein-protein interactions. Our results demonstrate that the [6 + 4]-adduct instead of [4 + 2]-adduct is the bona fide biosynthetic intermediate.


Assuntos
Reação de Cicloadição/métodos , Lactonas/química , Lactonas/metabolismo , Catálise , Fermentação , Flavinas , Hidroxilação , Cetonas , Modelos Moleculares , Oxirredutases/genética
3.
Org Lett ; 23(9): 3724-3728, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877854

RESUMO

Ansaseomycins are ansamycin-type natural products produced through expression of the asm gene cluster in a heterologous host. A rare berberine bridge enzyme (BBE) like oxidase, AsmF, is encoded in the asm gene cluster. Deletion of asmF led to the accumulation of a series of structurally diverse compounds, all of which lacked the 23-hydroxyl group in naphthalenic motif. Our work demonstrated that AsmF dictated the formation of the naphthalenic hydroxyl group in ansaseomycin biosynthesis.


Assuntos
Naftalenos/química , Compostos Orgânicos/metabolismo , Oxirredutases/metabolismo , Compostos Orgânicos/química , Oxirredutases/química
4.
Org Lett ; 21(10): 3785-3788, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31033301

RESUMO

Genome mining of the marine Streptomyces seoulensis A01 enabled the identification of a giant type I polyketide synthase gene cluster ( asm). Heterologous expression of the cryptic asm cluster using a bacterial artificial chromosome vector in heterologous host led to the production of ansaseomycins A (1) and B (2). A plausible biosynthetic pathway was also proposed. Additionally, compounds 1 and 2 are active against K562 cell lines with IC50 values of 13.3 and 18.1 µM, respectively.


Assuntos
Lactamas Macrocíclicas/metabolismo , Policetídeo Sintases/metabolismo , Streptomyces/metabolismo , Vias Biossintéticas , Cromossomos Artificiais Bacterianos , Lactamas Macrocíclicas/química , Estrutura Molecular , Família Multigênica , Policetídeo Sintases/química , Policetídeo Sintases/genética , Streptomyces/química , Streptomyces/genética
5.
Org Lett ; 20(10): 2967-2971, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29697266

RESUMO

Streptoseomycin (1), which is a rare macrodilactone with potent activities against microaerophilic bacteria, featuring a pentacyclic 5/14/10/6/6 ring system together with an ether bridge, was characterized by a combination of spectroscopic method and X-ray analysis from a marine Streptomyces seoulensis. Sequencing and characterization of a ∼76-kb biosynthetic gene cluster led to the proposition of the biosynthetic pathway of 1. Heterologous expression of the gene cluster using a BAC vector in Streptomyces chartreusis 1018 led to the successful production of 1.


Assuntos
Lactonas/síntese química , Clonagem Molecular , Estrutura Molecular , Família Multigênica , Streptomyces
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa