Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.371
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
2.
Cell ; 185(18): 3441-3456.e19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055202

RESUMO

Great progress has been made in understanding gut microbiomes' products and their effects on health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such preferences correlate with microbiome composition changes in response to dietary modifications. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the ingested nutrients.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Dieta , Fibras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Lactatos/metabolismo , Camundongos , Nutrientes
3.
Nat Immunol ; 25(1): 66-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168955

RESUMO

CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.


Assuntos
Regulação da Expressão Gênica , Linfócitos T Reguladores , Diferenciação Celular
4.
Nat Immunol ; 23(11): 1577-1587, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271146

RESUMO

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.


Assuntos
Dermatite Atópica , Interleucina-27 , Psoríase , Camundongos , Animais , Interleucina-27/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/patologia , Queratinócitos/metabolismo , Pele/patologia , Psoríase/genética , Psoríase/patologia , Inflamação/metabolismo
5.
Cell ; 170(3): 470-482.e11, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735751

RESUMO

Voltage-gated sodium (Nav) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNav1.4, the Nav channel from electric eel, in complex with the ß1 subunit at 4.0 Å resolution. The immunoglobulin domain of ß1 docks onto the extracellular L5I and L6IV loops of EeNav1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSDIII). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed NavPaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation.


Assuntos
Electrophorus/metabolismo , Proteínas de Peixes/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Proteínas de Peixes/metabolismo , Proteínas de Peixes/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Alinhamento de Sequência , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestrutura
6.
Immunity ; 55(11): 2187-2205.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351376

RESUMO

Bats are reservoir hosts of many zoonotic viruses with pandemic potential. We utilized single-cell transcriptome sequencing (scRNA-seq) to analyze the immune response in bat lungs upon in vivo infection with a double-stranded RNA virus, Pteropine orthoreovirus PRV3M. Bat neutrophils were distinguished by high basal IDO1 expression. NK cells and T cells were the most abundant immune cells in lung tissue. Three distinct CD8+ effector T cell populations could be delineated by differential expression of KLRB1, GFRA2, and DPP4. Select NK and T clusters increased expression of genes involved in T cell activation and effector function early after viral infection. Alveolar macrophages and classical monocytes drove antiviral interferon signaling. Infection expanded a CSF1R+ population expressing collagen-like genes, which became the predominant myeloid cell type post-infection. This work uncovers features relevant to viral disease tolerance in bats, lays a foundation for future experimental work, and serves as a resource for comparative immunology studies.


Assuntos
Quirópteros , Viroses , Animais , Quirópteros/genética , Néctar de Plantas , Transcriptoma , Análise de Célula Única , Perfilação da Expressão Gênica
7.
Mol Cell ; 83(10): 1659-1676.e11, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37116496

RESUMO

Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.


Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Epigênese Genética , Envelhecimento/genética , Fatores de Transcrição/metabolismo
8.
Nat Immunol ; 19(3): 233-245, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358709

RESUMO

Malignancies can compromise innate immunity, but the mechanisms of this are largely unknown. Here we found that, via tumor-derived exosomes (TEXs), cancers were able to transfer activated epidermal growth factor receptor (EGFR) to host macrophages and thereby suppress innate antiviral immunity. Screening of the human kinome identified the kinase MEKK2 in macrophages as an effector of TEX-delivered EGFR that negatively regulated the antiviral immune response. In the context of experimental tumor implantation, MEKK2-deficient mice were more resistant to viral infection than were wild-type mice. Injection of TEXs into mice reduced innate immunity, increased viral load and increased morbidity in an EGFR- and MEKK2-dependent manner. MEKK2 phosphorylated IRF3, a transcription factor crucial for the production of type I interferons; this triggered poly-ubiquitination of IRF3 and blocked its dimerization, translocation to the nucleus and transcriptional activity after viral infection. These findings identify a mechanism by which cancer cells can dampen host innate immunity and potentially cause patients with cancer to become immunocompromised.


Assuntos
Receptores ErbB/imunologia , Exossomos/imunologia , Imunidade Inata/imunologia , Neoplasias/imunologia , Viroses/imunologia , Adulto , Animais , Receptores ErbB/metabolismo , Exossomos/metabolismo , Feminino , Humanos , Hospedeiro Imunocomprometido/imunologia , MAP Quinase Quinase Quinase 2/imunologia , MAP Quinase Quinase Quinase 2/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade
9.
Nature ; 631(8019): 98-105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867037

RESUMO

A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3-6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3 probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10-80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.

10.
Nature ; 626(7997): 79-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172640

RESUMO

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

12.
Nat Immunol ; 18(7): 733-743, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28481329

RESUMO

The transcription regulator YAP controls organ size by regulating cell growth, proliferation and apoptosis. However, whether YAP has a role in innate antiviral immunity is largely unknown. Here we found that YAP negatively regulated an antiviral immune response. YAP deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in vivo. YAP blocked dimerization of the transcription factor IRF3 and impeded translocation of IRF3 to the nucleus after viral infection. Notably, virus-activated kinase IKKɛ phosphorylated YAP at Ser403 and thereby triggered degradation of YAP in lysosomes and, consequently, relief of YAP-mediated inhibition of the cellular antiviral response. These findings not only establish YAP as a modulator of the activation of IRF3 but also identify a previously unknown regulatory mechanism independent of the kinases Hippo and LATS via which YAP is controlled by the innate immune pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Fibroblastos/imunologia , Quinase I-kappa B/metabolismo , Imunidade Inata/imunologia , Lisossomos/metabolismo , Macrófagos/imunologia , Fosfoproteínas/imunologia , Infecções por Rhabdoviridae/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Imunofluorescência , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Microscopia Confocal , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Rhabdoviridae/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Vesiculovirus , Carga Viral , Proteínas de Sinalização YAP
13.
Nature ; 619(7971): 761-767, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37495878

RESUMO

China's goal to achieve carbon (C) neutrality by 2060 requires scaling up photovoltaic (PV) and wind power from 1 to 10-15 PWh year-1 (refs. 1-5). Following the historical rates of renewable installation1, a recent high-resolution energy-system model6 and forecasts based on China's 14th Five-year Energy Development (CFED)7, however, only indicate that the capacity will reach 5-9.5 PWh year-1 by 2060. Here we show that, by individually optimizing the deployment of 3,844 new utility-scale PV and wind power plants coordinated with ultra-high-voltage (UHV) transmission and energy storage and accounting for power-load flexibility and learning dynamics, the capacity of PV and wind power can be increased from 9 PWh year-1 (corresponding to the CFED path) to 15 PWh year-1, accompanied by a reduction in the average abatement cost from US$97 to US$6 per tonne of carbon dioxide (tCO2). To achieve this, annualized investment in PV and wind power should ramp up from US$77 billion in 2020 (current level) to US$127 billion in the 2020s and further to US$426 billion year-1 in the 2050s. The large-scale deployment of PV and wind power increases income for residents in the poorest regions as co-benefits. Our results highlight the importance of upgrading power systems by building energy storage, expanding transmission capacity and adjusting power load at the demand side to reduce the economic cost of deploying PV and wind power to achieve carbon neutrality in China.

14.
Nature ; 616(7955): 77-83, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020008

RESUMO

Inorganic superionic conductors possess high ionic conductivity and excellent thermal stability but their poor interfacial compatibility with lithium metal electrodes precludes application in all-solid-state lithium metal batteries1,2. Here we report a LaCl3-based lithium superionic conductor possessing excellent interfacial compatibility with lithium metal electrodes. In contrast to a Li3MCl6 (M = Y, In, Sc and Ho) electrolyte lattice3-6, the UCl3-type LaCl3 lattice has large, one-dimensional channels for rapid Li+ conduction, interconnected by La vacancies via Ta doping and resulting in a three-dimensional Li+ migration network. The optimized Li0.388Ta0.238La0.475Cl3 electrolyte exhibits Li+ conductivity of 3.02 mS cm-1 at 30 °C and a low activation energy of 0.197 eV. It also generates a gradient interfacial passivation layer to stabilize the Li metal electrode for long-term cycling of a Li-Li symmetric cell (1 mAh cm-2) for more than 5,000 h. When directly coupled with an uncoated LiNi0.5Co0.2Mn0.3O2 cathode and bare Li metal anode, the Li0.388Ta0.238La0.475Cl3 electrolyte enables a solid battery to run for more than 100 cycles with a cutoff voltage of 4.35 V and areal capacity of more than 1 mAh cm-2. We also demonstrate rapid Li+ conduction in lanthanide metal chlorides (LnCl3; Ln = La, Ce, Nd, Sm and Gd), suggesting that the LnCl3 solid electrolyte system could provide further developments in conductivity and utility.

15.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
16.
Mol Cell ; 81(8): 1781-1788.e4, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571424

RESUMO

Mediator is a universal adaptor for transcription control. It serves as an interface between gene-specific activator or repressor proteins and the general RNA polymerase II (pol II) transcription machinery. Previous structural studies revealed a relatively small part of Mediator and none of the gene activator-binding regions. We have determined the cryo-EM structure of the Mediator at near-atomic resolution. The structure reveals almost all amino acid residues in ordered regions, including the major targets of activator proteins, the Tail module, and the Med1 subunit of the Middle module. Comparison of Mediator structures with and without pol II reveals conformational changes that propagate across the entire Mediator, from Head to Tail, coupling activator- and pol II-interacting regions.


Assuntos
Subunidade 1 do Complexo Mediador/metabolismo , Aminoácidos/genética , Conformação Proteica , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
17.
Nature ; 601(7891): 69-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987213

RESUMO

The 660-kilometre seismic discontinuity is the boundary between the Earth's lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1-3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4-10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11-13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite-bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite-bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite-bridgmanite transition. The steep negative boundary of the akimotoite-bridgmanite transition will cause slab stagnation (a stalling of the slab's descent) due to significant upward buoyancy14,15.

18.
Nature ; 609(7926): 299-306, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071193

RESUMO

The potential of mitigation actions to limit global warming within 2 °C (ref. 1) might rely on the abundant supply of biomass for large-scale bioenergy with carbon capture and storage (BECCS) that is assumed to scale up markedly in the future2-5. However, the detrimental effects of climate change on crop yields may reduce the capacity of BECCS and threaten food security6-8, thus creating an unrecognized positive feedback loop on global warming. We quantified the strength of this feedback by implementing the responses of crop yields to increases in growing-season temperature, atmospheric CO2 concentration and intensity of nitrogen (N) fertilization in a compact Earth system model9. Exceeding a threshold of climate change would cause transformative changes in social-ecological systems by jeopardizing climate stability and threatening food security. If global mitigation alongside large-scale BECCS is delayed to 2060 when global warming exceeds about 2.5 °C, then the yields of agricultural residues for BECCS would be too low to meet the Paris goal of 2 °C by 2200. This risk of failure is amplified by the sustained demand for food, leading to an expansion of cropland or intensification of N fertilization to compensate for climate-induced yield losses. Our findings thereby reinforce the urgency of early mitigation, preferably by 2040, to avoid irreversible climate change and serious food crises unless other negative-emission technologies become available in the near future to compensate for the reduced capacity of BECCS.


Assuntos
Agricultura , Produtos Agrícolas , Segurança Alimentar , Aquecimento Global , Agricultura/métodos , Agricultura/tendências , Atmosfera/química , Dióxido de Carbono/análise , Sequestro de Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Retroalimentação , Segurança Alimentar/métodos , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Objetivos , Humanos , Nitrogênio/análise , Estações do Ano , Temperatura , Fatores de Tempo
19.
Nature ; 603(7902): 610-615, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322253

RESUMO

The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap1. Another way to obtain Fermi arcs is to break either the time-reversal symmetry2 or the inversion symmetry3 of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality4, and their projections are connected by Fermi arcs at the bulk boundary3,5-12. Here, we present experimental evidence that pairs of hole- and electron-like Fermi arcs emerge below the Neel temperature (TN) in the antiferromagnetic state of cubic NdBi due to a new magnetic splitting effect. The observed magnetic splitting is unusual, as it creates bands of opposing curvature, which change with temperature and follow the antiferromagnetic order parameter. This is different from previous theoretically considered13,14 and experimentally reported cases15,16 of magnetic splitting, such as traditional Zeeman and Rashba, in which the curvature of the bands is preserved. Therefore, our findings demonstrate a type of magnetic band splitting in the presence of a long-range antiferromagnetic order that is not readily explained by existing theoretical ideas.

20.
Nature ; 603(7903): 919-925, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090164

RESUMO

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Células B de Memória/imunologia , Camundongos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa