Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 925
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(2): 272-288.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724787

RESUMO

Self-nonself discrimination is vital for the immune system to mount responses against pathogens while maintaining tolerance toward the host and innocuous commensals during homeostasis. Here, we investigated how indiscriminate DNA sensors, such as cyclic GMP-AMP synthase (cGAS), make this self-nonself distinction. Screening of a small-molecule library revealed that spermine, a well-known DNA condenser associated with viral DNA, markedly elevates cGAS activation. Mechanistically, spermine condenses DNA to enhance and stabilize cGAS-DNA binding, optimizing cGAS and downstream antiviral signaling. Spermine promotes condensation of viral, but not host nucleosome, DNA. Deletion of viral DNA-associated spermine, by propagating virus in spermine-deficient cells, reduced cGAS activation. Spermine depletion subsequently attenuated cGAS-mediated antiviral and anticancer immunity. Collectively, our results reveal a pathogenic DNA-associated molecular pattern that facilitates nonself recognition, linking metabolism and pathogen recognition.


Assuntos
DNA Viral , Espermina , DNA Viral/metabolismo , Imunidade Inata , Antivirais , Nucleotidiltransferases/metabolismo
2.
Mol Cell ; 81(6): 1216-1230.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606996

RESUMO

Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Interferon gama/metabolismo , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
3.
PLoS Pathog ; 20(1): e1011958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227600

RESUMO

Autophagy-related protein 7 (ATG7) is an essential autophagy effector enzyme. Although it is well known that autophagy plays crucial roles in the infections with various viruses including influenza A virus (IAV), function and underlying mechanism of ATG7 in infection and pathogenesis of IAV remain poorly understood. Here, in vitro studies showed that ATG7 had profound effects on replication of IAV. Depletion of ATG7 markedly attenuated the replication of IAV, whereas overexpression of ATG7 facilitated the viral replication. ATG7 conditional knockout mice were further employed and exhibited significantly resistant to viral infections, as evidenced by a lower degree of tissue injury, slower body weight loss, and better survival, than the wild type animals challenged with either IAV (RNA virus) or pseudorabies virus (DNA virus). Interestingly, we found that ATG7 promoted the replication of IAV in autophagy-dependent and -independent manners, as inhibition of autophagy failed to completely block the upregulation of IAV replication by ATG7. To determine the autophagy-independent mechanism, transcriptome analysis was utilized and demonstrated that ATG7 restrained the production of interferons (IFNs). Loss of ATG7 obviously enhanced the expression of type I and III IFNs in ATG7-depleted cells and mice, whereas overexpression of ATG7 impaired the interferon response to IAV infection. Consistently, our experiments demonstrated that ATG7 significantly suppressed IRF3 activation during the IAV infection. Furthermore, we identified long noncoding RNA (lncRNA) GAPLINC as a critical regulator involved in the promotion of IAV replication by ATG7. Importantly, both inactivation of IRF3 and inhibition of IFN response caused by ATG7 were mediated through control over GAPLINC expression, suggesting that GAPLINC contributes to the suppression of antiviral immunity by ATG7. Together, these results uncover an autophagy-independent mechanism by which ATG7 suppresses host innate immunity and establish a critical role for ATG7/GAPLINC/IRF3 axis in regulating IAV infection and pathogenesis.


Assuntos
Vírus da Influenza A , Influenza Humana , Viroses , Animais , Humanos , Camundongos , Imunidade Inata , Interferons , Replicação Viral
4.
Plant Cell ; 35(5): 1455-1473, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36748257

RESUMO

In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Ligação a DNA/metabolismo
5.
Dev Biol ; 510: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403101

RESUMO

Physiological root resorption is a common occurrence during the development of deciduous teeth in children. Previous research has shown that the regulation of the inflammatory microenvironment through autophagy in DDPSCs is a significant factor in this process. However, it remains unclear why there are variations in the autophagic status of DDPSCs at different stages of physiological root resorption. To address this gap in knowledge, this study examines the relationship between the circadian clock of DDPSCs, the autophagic status, and the periodicity of masticatory behavior. Samples were collected from deciduous teeth at various stages of physiological root resorption, and DDPSCs were isolated and cultured for analysis. The results indicate that the circadian rhythm of important autophagy genes, such as Beclin-1 and LC3, and the clock gene REV-ERBα in DDPSCs, disappears under mechanical stress. Additionally, the study found that REV-ERBα can regulate Beclin-1 and LC3. Evidence suggests that mechanical stress is a trigger for the regulation of autophagy via REV-ERBα. Overall, this study highlights the importance of mechanical stress in regulating autophagy of DDPSCs via REV-ERBα, which affects the formation of the inflammatory microenvironment and plays a critical role in physiological root resorption in deciduous teeth.


Assuntos
Relógios Circadianos , Reabsorção da Raiz , Criança , Humanos , Reabsorção da Raiz/genética , Proteína Beclina-1/genética , Ritmo Circadiano/genética , Células-Tronco , Dente Decíduo
6.
Plant Cell ; 34(1): 419-432, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34755875

RESUMO

In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
7.
Mol Cell Proteomics ; 22(12): 100667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852321

RESUMO

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteômica , Mitofagia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Quinases Associadas a rho
8.
Chem Soc Rev ; 53(3): 1592-1623, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38167687

RESUMO

Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.


Assuntos
Materiais Biocompatíveis , Polímeros , Ligação de Hidrogênio , Polímeros/química
9.
J Am Chem Soc ; 146(2): 1563-1571, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38141030

RESUMO

Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38747899

RESUMO

Perigonadal adipose tissue is a homogeneous white adipose tissue (WAT) in adult male mice, without any brown adipose tissue (BAT) present. However, there are congenital differences in the gonads between male and female mice. Whether heterogeneity existed in perigonadal ATs in female mice remains unknown. This study reported a perigonadal BAT located between abdominal lymph nodes and uterine cervix in female mice, termed lymph node-cervical adipose tissue (LNCAT). Its counterpart, lymph node-prostatic adipose tissue (LNPAT), exhibited white phenotype in adult virgin male mice. When exposed to cold, LNCAT/LNPAT increased UCP1 expression via activation of TH, in which abdominal lymph nodes were involved. Interestingly, the UCP1 expression in LNCAT/LNPAT varied under different reproductive stages. The UCP1 expression in LNCAT was upregulated at early pregnancy, declined at mid-late pregnancy, and reverted in weaning dams. Mating behavior stimulated LNPAT browning in male mice. We found that androgen but not estrogen or progesterone inhibited UCP1 expression in LNCAT. Androgen administration reversed the castration-induced LNPAT browning. Our results identified a perigonadal BAT in female mice and characterized its UCP1 expression patterns under various conditions.

11.
Kidney Int ; 105(5): 1020-1034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387504

RESUMO

The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Diabetes Mellitus Experimental/complicações , Privação do Sono/complicações , Privação do Sono/metabolismo , Proteinúria/genética , Proteinúria/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/complicações , Camundongos Knockout , Autofagia
12.
Biochem Biophys Res Commun ; 692: 149330, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048728

RESUMO

The transcriptional activation function of YAP in cancer development has been widely studied. However, the underlying regulatory mechanisms remain largely unknown. In this study, we found that EP300, one histone acetyltransferase, interacted with YAP and was recruited into the phase separated condensates of YAP. Transcriptomic analysis revealed substantial alterations in gene expression upon EP300 depletion, with downregulated genes associated with cancer progression and Hippo-YAP pathway. Notably, disruption of EP300 inhibited the transcriptional activation of YAP and reduced the binding of H3K27ac on YAP target oncogenes in Hippo pathway. Moreover, depletion of EP300 effectively inhibited YAP-driven tumor growth. Taken together, these results indicate that EP300 contributes to lung cancer progression by promoting the oncogenic transcription of YAP through H3K27ac, which suggests that YAP-EP300 axis may be potential therapeutic targets for lung cancer treatment.


Assuntos
Via de Sinalização Hippo , Neoplasias Pulmonares , Humanos , Fatores de Transcrição/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Pulmonares/genética , Proteínas de Sinalização YAP , Proliferação de Células , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo
13.
Biochem Biophys Res Commun ; 693: 149387, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38145606

RESUMO

Peritoneal fibrosis (PF) is particularly common in individuals undergoing peritoneal dialysis (PD). Fibrosis of the parenchymal tissue typically progresses slowly. Therefore, preventing and reducing the advancement of fibrosis is crucial for effective patient treatment. Roxadustat is a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), primarily used to treat and improve renal anemia. Recent studies have found that HIF-1α possesses antioxidant activity and exerts a certain protective effect in ischemic heart disease and spinal cord injury, while it can also delay the progression of pulmonary and renal fibrosis. This study establishes the mice model through intraperitoneal injection of 4.25 % peritoneal dialysate fluid (PDF) and explores the therapeutic effects of Roxadustat by inducing TGF-ß1-mediated epithelial-mesenchymal transition (EMT) in Met-5A cells. The aim is to investigate the protective role and mechanisms of Roxadustat against PD-related PF. We observed thicker peritoneal tissue and reduced permeability in animals with PD-related PF samples. This was accompanied by heightened inflammation, which Roxadustat alleviated by lowering the levels of inflammatory cytokines (IL-6, TNF-α). Furthermore, Roxadustat inhibited EMT in PF mice and TGF-ß1-induced Met-5A cells, as evidenced by decreased expression of fibrotic markers, such as fibronectin, collagen I, and α-SMA, alongside an elevation in the expression of the epithelial marker, E-cadherin. Roxadustat also significantly decreased the expression of TGF-ß1 and the phosphorylation of p-Smad2 and p-Smad3. In conclusion, Roxadustat ameliorates peritoneal fibrosis through the TGF-ß/Smad pathway.


Assuntos
Nefropatias , Fibrose Peritoneal , Humanos , Camundongos , Animais , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Peritônio/patologia , Fibrose , Transição Epitelial-Mesenquimal , Nefropatias/patologia
14.
Small ; 20(25): e2309279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38214439

RESUMO

Radiation resistance in breast cancer resulting in residual lesions or recurrence is a significant cause to radiotherapy failure. Cancer-associated fibroblasts (CAFs) and radiotherapy-induced senescent CAFs can further lead to radiation resistance and tumor immunosuppressive microenvironment. Here, an engineering cancer-cell-biomimetic nanoplatform is constructed for dual-targeted clearance of CAFs as well as senescent CAFs. The nanoplatform is prepared by 4T1 cell membrane vesicles chimerized with FAP single-chain fragment variable as the biomimetic shell for targeting of CAFs and senescent CAFs, and PLGA nanoparticles (NPs) co-encapsulated with nintedanib and ABT-263 as the core for clearance of CAFs and senescent CAFs, which are noted as FAP-CAR-CM@PLGA-AB NPs. It is evidenced that FAP-CAR-CM@PLGA-AB NPs directly suppressed the tumor-promoting effect of senescent CAFs. It also exhibits prolonged blood circulation and enhanced tumor accumulation, dual-cleared CAFs and senescent CAFs, improved radiation resistance in both acquired and patient-derived radioresistant tumor cells, and effective antitumor effect with the tumor suppression rate of 86.7%. In addition, FAP-CAR-CM@PLGA-AB NPs reverse the tumor immunosuppressive microenvironment and enhance systemic antitumor immunity. The biomimetic system for dual-targeted clearance of CAFs and senescent CAFs provides a potential strategy for enhancing the radio-sensitization of breast cancer.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Senescência Celular , Nanopartículas , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Nanopartículas/química , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Camundongos , Biomimética/métodos , Microambiente Tumoral/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
15.
Small ; 20(14): e2306446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105592

RESUMO

Copper-based nanozymes exhibit excellent antitumor activity but are easily inactivated due to the disturbance of proteins or other macromolecules with sulfhydryl. A tumor microenvironment-responsive CuMnO@Fe3O4 (CMF) core-shell nanozyme for highly efficient tumor theranostics is developed. A platelet-derived growth factor receptor-ß-recognizing cyclic peptide (PDGFB) target is conjugated to the surface of CMF to fabricate a tumor-specific nanozyme (PCMF). The core-shell nanostructure significantly avoids the oxidation and inactivation of copper-based nanozyme, promoting the antitumor activity of PCMF. The weak acid- and GSH-activated T1 and T2 relaxation rate of PCMF contributes to T1 and T2 dual contrast imaging at the tumor site. In addition, the PCMF disintegrates and produces some metal ions that possess Fenton catalytic activity (i.e., Cu+, Mn2+, and Fe2+) under TME. This process significantly depletes GSH, accelerates Fenton and Fenton-like reactions, enhances cellular reactive oxygen species (ROS) levels, and induces cancer cell apoptosis and ferroptosis. PCMF also exhibits photothermal functions, so it can be used in combined photothermal therapy, ferroptosis therapy, and chemodynamic therapy, improving anticancer activity. This work provides insights into the design of an exquisite nanostructure for high-sensitive and tumor-specific theranostics.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Medicina de Precisão , Cobre , Microambiente Tumoral , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Peróxido de Hidrogênio , Linhagem Celular Tumoral
16.
Small ; 20(7): e2306132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800612

RESUMO

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

17.
Plant Cell Environ ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654596

RESUMO

Plants possess the remarkable ability to integrate the circadian clock with various signalling pathways, enabling them to quickly detect and react to both external and internal stress signals. However, the interplay between the circadian clock and biological processes in orchestrating responses to environmental stresses remains poorly understood. TOC1, a core component of the plant circadian clock, plays a vital role in maintaining circadian rhythmicity and participating in plant defences. Here, our study reveals a direct interaction between TOC1 and the promoter region of MYB44, a key gene involved in plant defence. TOC1 rhythmically represses MYB44 expression, thereby ensuring elevated MYB44 expression at dawn to help the plant in coping with lowest temperatures during diurnal cycles. Additionally, both TOC1 and MYB44 can be induced by cold stress in an Abscisic acid (ABA)-dependent and independent manner. TOC1 demonstrates a rapid induction in response to lower temperatures compared to ABA treatment, suggesting timely flexible regulation of TOC1-MYB44 regulatory module by the circadian clock in ensuring a proper response to diverse stresses and maintaining a balance between normal physiological processes and energy-consuming stress responses. Our study elucidates the role of TOC1 in effectively modulating expression of MYB44, providing insights into the regulatory network connecting the circadian clock, ABA signalling, and stress-responsive genes.

18.
Cardiovasc Diabetol ; 23(1): 155, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715023

RESUMO

BACKGROUND: Given the increasing attention to glycemic variability (GV) and its potential implications for cardiovascular outcomes. This study aimed to explore the impact of acute GV on short-term outcomes in Chinese patients with ST-segment elevation myocardial infarction (STEMI). METHODS: This study enrolled 7510 consecutive patients diagnosed with acute STEMI from 274 centers in China. GV was assessed using the coefficient of variation of blood glucose levels. Patients were categorized into three groups according to GV tertiles (GV1, GV2, and GV3). The primary outcome was 30-day all-cause death, and the secondary outcome was major adverse cardiovascular events (MACEs). Cox regression analyses were conducted to determine the independent correlation between GV and the outcomes. RESULTS: A total of 7136 patients with STEMI were included. During 30-days follow-up, there was a significant increase in the incidence of all-cause death and MACEs with higher GV tertiles. The 30-days mortality rates were 7.4% for GV1, 8.7% for GV2 and 9.4% for GV3 (p = 0.004), while the MACEs incidence rates was 11.3%, 13.8% and 15.8% for the GV1, GV2 and GV3 groups respectively (p < 0.001). High GV levels during hospitalization were significantly associated with an increased risk of 30-day all-cause mortality and MACEs. When analyzed as a continuous variable, GV was independently associated with a higher risk of all-cause mortality (hazard ratio [HR] 1.679, 95% confidence Interval [CI] 1.005-2.804) and MACEs (HR 2.064, 95% CI 1.386-3.074). Additionally, when analyzed as categorical variables, the GV3 group was found to predict an increased risk of MACEs, irrespective of the presence of diabetes mellitus (DM). CONCLUSION: Our study findings indicate that a high GV during hospitalization was significantly associated with an increased risk of 30-day all-cause mortality and MACE in Chinese patients with STEMI. Moreover, acute GV emerged as an independent predictor of increased MACEs risk, regardless of DM status.


Assuntos
Biomarcadores , Glicemia , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Glicemia/metabolismo , Idoso , China/epidemiologia , Fatores de Tempo , Fatores de Risco , Medição de Risco , Biomarcadores/sangue , Causas de Morte , Incidência , Estudos Retrospectivos , Resultado do Tratamento
19.
FASEB J ; 37(11): e23265, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874273

RESUMO

Mitochondrial dysfunction plays an important role in the onset and progression of podocyte injury and proteinuria. However, the process by which the change in the podocyte mitochondria occurs is not well understood. Uncoupling protein 2 (UCP2) is a mitochondrial anion carrier protein, which is located in the mitochondrial inner membrane. Here, we reported that mice with podocyte-specific Ucp2 deficiency developed podocytopathy with proteinuria with aging. Furthermore, those mice exhibited increased proteinuria in experimental models evoked by Adriamycin. Our findings suggest that UCP2 mediates mitochondrial dysfunction by regulating mitochondrial dynamic balance. Ucp2-deleted podocytes exhibited increased mitochondrial fission and deficient in ATP production. Mechanistically, opacity protein 1 (OPA1), a key protein in fusion of mitochondrial inner membrane, was regulated by UCP2. Ucp2 deficiency promoted proteolysis of OPA1 by activation OMA1 which belongs to mitochondrial inner membrane zinc metalloprotease. Those finding demonstrate the role of UCP2 in mitochondrial dynamics in podocytes and provide new insights into pathogenesis associated with podocyte injury and proteinuria.


Assuntos
Podócitos , Proteólise , Animais , Camundongos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
20.
Mol Pharm ; 21(6): 2659-2672, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38695194

RESUMO

Regulatory T cells (Tregs), a subset of CD4+ T cells, are indispensable in maintaining immune self-tolerance and have been utilized in various diseases. Treg-derived extracellular vesicles (Treg-EVs) have been discovered to play an important role in the mechanism of Treg functions. As cell-derived membranous particles, EVs carry multiple bioactive substances that possess tremendous potential for theranostics. Treg-EVs are involved in numerous physiological and pathological processes, carrying proteins and miRNAs inherited from the parental cells. To comprehensively understand the function of Treg-EVs, here we reviewed the classification of Treg-EVs, the active molecules in Treg-EVs, their various applications in diseases, and the existing challenges for Treg-EVs based theranostics. This Review aims to clarify the feasibility and potential of Treg-EVs in diseases and theranostics, facilitating further research and application of Treg-EVs.


Assuntos
Vesículas Extracelulares , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Humanos , Animais , Nanomedicina Teranóstica/métodos , MicroRNAs/genética , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa