Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2176-2186, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38625027

RESUMO

The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-ß (Aß) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aß levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aß and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aß peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aß42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aß42, [125I]iodo-Aß40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aß42, and [125I]iodo-Aß40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aß and insulin trafficking receptors (LRP-1 and IR-ß). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aß peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aß accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.


Assuntos
Peptídeos beta-Amiloides , Barreira Hematoencefálica , Insulina , Transdução de Sinais , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Insulina/metabolismo , Radioisótopos do Iodo , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tirfostinas/farmacologia
2.
Biomacromolecules ; 25(1): 238-247, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38116793

RESUMO

Chitinase plays a vital role in the efficient biotransformation of the chitin substrate. This study aimed to modify and elucidate the contribution of the relatively conserved residues in the active site architecture of a thermophilic chitinase SsChi18A from Streptomyces sp. F-3 in processive catalysis. The enzymatic activity on colloidal chitin increased to 151%, 135%, and 129% in variants Y286W, E287A, and K186A compared with the wild type (WT). Also, the apparent processive parameter G2/G1 was lower in the variants compared to the WT, indicating the essential role of Tyr-286, Glu-287, and Lys-186 in processive catalysis. Additionally, the enzymatic activity on the crystalline chitin of F48W and double mutants F48W/Y209F and F48W/Y286W increased by 35%, 16%, and 36% compared with that for WT. Molecular dynamics simulations revealed that the driving force of processive catalysis might be related to the changes in interaction energy. This study provided a rational design strategy targeting relatively conserved residues to enhance the catalytic activity of GH18 processive chitinases.


Assuntos
Quitinases , Domínio Catalítico , Quitinases/genética , Quitinases/química , Quitinases/metabolismo , Quitina/química , Simulação de Dinâmica Molecular
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 825-832, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686460

RESUMO

Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.


Assuntos
Fungos , Fungos/metabolismo , Fungos/genética , Metabolismo Secundário , Carbono/metabolismo , Agentes de Controle Biológico/metabolismo , Controle Biológico de Vetores/métodos , Nitrogênio/metabolismo , Animais , Metabolômica/métodos
4.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791523

RESUMO

Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.


Assuntos
Transportador de Glucose Tipo 1 , Glicoconjugados , Simulação de Dinâmica Molecular , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucose/metabolismo , Transporte Biológico , Termodinâmica
5.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668807

RESUMO

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Histonas , Lisina , Família Multigênica , Penicillium , Metabolismo Secundário , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histonas/genética , Lisina/metabolismo , Lisina/biossíntese , Metilação , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Reprodução Assexuada/genética , Metabolismo Secundário/genética
6.
Mol Microbiol ; 117(5): 1002-1022, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35072962

RESUMO

The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as an excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.


Assuntos
Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Pharmacol Exp Ther ; 386(1): 102-110, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221092

RESUMO

Plasma pharmacokinetic (PK) data are required as an input function for graphical analysis of single positron emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/CT (PET/CT) data to evaluate tissue influx rate of radiotracers. Dynamic heart imaging data are often used as a surrogate of plasma PK. However, accumulation of radiolabel in the heart tissue may cause overprediction of plasma PK. Therefore, we developed a compartmental model, which involves forcing functions to describe intact and degraded radiolabeled proteins in plasma and their accumulation in heart tissue, to deconvolve plasma PK of 125I-amyloid beta 40 (125I-Aß 40) and 125I-insulin from their dynamic heart imaging data. The three-compartment model was shown to adequately describe the plasma concentration-time profile of intact/degraded proteins and the heart radioactivity time data obtained from SPECT/CT imaging for both tracers. The model was successfully applied to deconvolve the plasma PK of both tracers from their naïve datasets of dynamic heart imaging. In agreement with our previous observations made by conventional serial plasma sampling, the deconvolved plasma PK of 125I-Aß 40 and 125I-insulin in young mice exhibited lower area under the curve than aged mice. Further, Patlak plot parameters extracted using deconvolved plasma PK as input function successfully recapitulated age-dependent plasma-to-brain influx kinetics changes. Therefore, the compartment model developed in this study provides a novel approach to deconvolve plasma PK of radiotracers from their noninvasive dynamic heart imaging. This method facilitates the application of preclinical SPECT/PET imaging data to characterize distribution kinetics of tracers where simultaneous plasma sampling is not feasible. SIGNIFICANCE STATEMENT: Knowledge of plasma pharmacokinetics (PK) of a radiotracer is necessary to accurately estimate its plasma-to-brain influx. However, simultaneous plasma sampling during dynamic imaging procedures is not always feasible. In the current study, we developed approaches to deconvolve plasma PK from dynamic heart imaging data of two model radiotracers, 125I-amyloid beta 40 (125I-Aß 40) and 125I-insulin. This novel method is expected to minimize the need for conducting additional plasma PK studies and allow for accurate estimation of the brain influx rate.


Assuntos
Insulinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Camundongos , Peptídeos beta-Amiloides , Elétrons , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos
8.
J Chem Inf Model ; 63(20): 6316-6331, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37821422

RESUMO

Trichothecenes are highly toxic mycotoxins produced by Fusarium fungi, while TRI101/201 family enzymes play a crucial role in detoxification through acetylation. Studies on the substrate specificity and catalytic kinetics of TRI101/201 have revealed distinct kinetic characteristics, with significant differences observed in catalytic efficiency toward deoxynivalenol, while the catalytic efficiency for T-2 toxin remains relatively consistent. In this study, we used structural bioinformatics analysis and a molecular dynamics simulation workflow to investigate the mechanism underlying the differential catalytic activity of TRI101/201. The findings revealed that the binding stability between trichothecenes and TRI101/201 hinges primarily on a hydrophobic cage structure within the binding site. An intrinsic disordered loop, termed loop cover, defined the evolutionary patterns of the TRI101/201 protein family that are categorized into four subfamilies (V1/V2/V3/M). Furthermore, the unique loop displayed different conformations among these subfamilies' structures, which served to disrupt (V1/V2/V3) or reinforce (M) the hydrophobic cages. The disrupted cages enhanced the water exposure of the hydrophilic moieties of substrates like deoxynivalenol and thereby hindered their binding to the catalytic sites of V-type enzymes. In contrast, this water exposure does not affect substrates like T-2 toxin, which have more hydrophobic substituents, resulting in a comparable catalytic efficiency of both V- and M-type enzymes. Overall, our studies provide theoretical support for understanding the catalytic mechanism of TRI101/201, which shows how an intrinsic disordered loop could impact the protein-ligand binding and suggests a direction for rational protein design in the future.


Assuntos
Toxina T-2 , Tricotecenos , Tricotecenos/química , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Sítios de Ligação , Água
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 529-539, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036250

RESUMO

Along with long-term evolution, the plant cell wall generates lignocellulose and other anti-degradation barriers to confront hydrolysis by fungi. Lytic polysaccharide monooxygenase (LPMO) is a newly defined oxidase in lignocellulosic degradation systems that significantly fuels hydrolysis. LPMO accepts electrons from wide sources, such as cellobiose dehydrogenase (CDH), glucose-methanol-choline (GMC) oxidoreductases, and small phenols. In addition, the extracellular cometabolic network formed by cosubstrates improves the degradation efficiency, forming a stable and efficient lignocellulose degradation system. In recent years, using structural proteomics to explore the internal structure and the complex redox system of LPMOs has become a research hotspot. In this review, the diversity of LPMOs, catalytic domains, carbohydrate binding modules, direct electron transfer with CDH, cosubstrates, and degradation networks of LPMOs are explored, which can provide a systematic reference for the application of lignocellulosic degradation systems in industrial approaches.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos , Transporte de Elétrons
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 343-355, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37143326

RESUMO

Thermal stability is one of the most important properties of enzymes, which sustains life and determines the potential for the industrial application of biocatalysts. Although traditional methods such as directed evolution and classical rational design contribute greatly to this field, the enormous sequence space of proteins implies costly and arduous experiments. The development of enzyme engineering focuses on automated and efficient strategies because of the breakthrough of high-throughput DNA sequencing and machine learning models. In this review, we propose a data-driven architecture for enzyme thermostability engineering and summarize some widely adopted datasets, as well as machine learning-driven approaches for designing the thermal stability of enzymes. In addition, we present a series of existing challenges while applying machine learning in enzyme thermostability design, such as the data dilemma, model training, and use of the proposed models. Additionally, a few promising directions for enhancing the performance of the models are discussed. We anticipate that the efficient incorporation of machine learning can provide more insights and solutions for the design of enzyme thermostability in the coming years.


Assuntos
Engenharia de Proteínas , Estabilidade Enzimática
11.
Cleft Palate Craniofac J ; 60(11): 1462-1473, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-35702016

RESUMO

OBJECTIVE: In the previous study, we identified bone morphogenetic protein 4 (BMP4) responsible for non-syndromic cleft lip with or without cleft palate (NSCL/P). We aimed to elucidate the effects and mechanisms of BMP4 on epithelial-mesenchymal transition (EMT) through Smad1 signaling pathway to be involved in NSCL/P. METHODS: The human oral epidermoid carcinoma cells (KBs) were transfected with plasmids or small interfering RNA (siRNA) to build the models. The migration of the cells was evaluated by transwell assay. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were used to detect the expressions of BMP4, E-cadherin, N-cadherin, EMT-related transcription factors snal1 and snal2, matrix metalloproteinase 2 (MMP2), MMP9, Smad1, and phosphorylated Smad1. RESULTS: In the overexpression group, the migration number of cells was increased significantly. The protein expression of E-cadherin was decreased significantly, while the protein expression level of the N-cadherin was increased significantly. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly higher. The expression level of Smad1 was not significantly changed, while the phosphorylation of Smad1 was significantly increased. In the BMP4-siRNA group, the migrating number cells was significantly decreased. The protein expression of E-cadherin was increased significantly, while the expression of N-cadherin was significantly decreased. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly lower than that of the control group. The expressions of Smad1 and phosphorylation of Smad1 were not significantly changed. CONCLUSIONS: BMP4 enhances cell migration and promotes cell EMT through Smad1 signaling pathway. Abnormal BMP4 mediates migration and EMT through other relevant signaling pathways resulting in NSCL/P. The study provides new insight into the mechanisms of NSCL/P associated with BMP4.n.


Assuntos
Proteína Morfogenética Óssea 4 , Fenda Labial , Fissura Palatina , Humanos , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Caderinas/genética , Fenda Labial/genética , Fenda Labial/complicações , Fissura Palatina/genética , Fissura Palatina/complicações , Transição Epitelial-Mesenquimal , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Palato , RNA Mensageiro , RNA Interferente Pequeno
12.
Bioconjug Chem ; 33(5): 892-906, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35420782

RESUMO

Aberrant insulin signaling has been considered one of the risk factors for the development of Alzheimer's disease (AD) and has drawn considerable attention from the research community to further study its role in AD pathophysiology. Herein, we describe the development of an insulin-based novel positron emission tomography (PET) probe, [68Ga]Ga-NOTA-insulin, to noninvasively study the role of insulin in AD. The developed PET probe [68Ga]Ga-NOTA-insulin showed a significantly higher uptake (0.396 ± 0.055 SUV) in the AD mouse brain compared to the normal (0.140 ± 0.027 SUV) mouse brain at 5 min post injection and also showed a similar trend at 10, 15, and 20 min post injection. In addition, [68Ga]Ga-NOTA-insulin was found to have a differential uptake in various brain regions at 30 min post injection. Among the brain regions, the cortex, thalamus, brain stem, and cerebellum showed a significantly higher standard uptake value (SUV) of [68Ga]Ga-NOTA-insulin in AD mice as compared to normal mice. The inhibition of the insulin receptor (IR) with an insulin receptor antagonist peptide (S961) in normal mice showed a similar brain uptake profile of [68Ga]Ga-NOTA-insulin as it was observed in the AD case, suggesting nonfunctional IR in AD and the presence of an alternative insulin uptake route in the absence of a functional IR. The Gjedde-Patlak graphical analysis was also performed to predict the input rate of [68Ga]Ga-NOTA-insulin into the brain using MicroPET imaging data and supported the in vivo results. The [68Ga]Ga-NOTA-insulin PET probe was successfully synthesized and evaluated in a mouse model of AD in comparison with [18F]AV1451 and [11C]PIB to noninvasively study the role of insulin in AD pathophysiology.


Assuntos
Doença de Alzheimer , Radioisótopos de Gálio , Doença de Alzheimer/diagnóstico por imagem , Animais , Compostos Heterocíclicos com 1 Anel , Insulina , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Receptor de Insulina
13.
Toxicol Ind Health ; 38(7): 399-407, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610186

RESUMO

Cypermethrin, an extensively used pyrethroid pesticide, is regarded as one of many endocrine-disrupting chemicals (EDCs) with anti-androgenic activity to damage male reproductive systems. We previously found cypermethrin-induced apoptosis in mouse Sertoli cells TM4. We hypothesized cypermethrin-induced TM4 apoptosis by the endoplasmic reticulum (ER) pathway. This study aimed to explore the roles of the ER pathway in cypermethrin-induced apoptosis in TM4 cells. The cells were treated with cypermethrin for 24 h at various concentrations (0 µM, 10 µM, 20 µM, 40 µM, and 80 µM). Flow cytometry was used to test for apoptosis. Western blot was used to test protein expressions in the ER stress pathway. The results showed that the apoptosis rate of TM4 cells increased with increased concentrations of cypermethrin, and a significant difference was detected in the 80-µM group. The protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like ER kinase (PERK), p-PERK, α subunit of eukaryotic initiation factor (eIF2α), p-eIF2α, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), caspase-12, caspase-9, and caspase-3 increased with increased concentrations of cypermethrin. The results suggested cypermethrin-induced apoptosis in TM4 cells regulated by the ER pathway involving PERK-eIF2α-ATF4-CHOP. The study provides a new insight into cypermethrin-induced apoptosis in Sertoli cells.


Assuntos
Piretrinas , eIF-2 Quinase , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose , Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Masculino , Camundongos , Piretrinas/toxicidade , Células de Sertoli , Transdução de Sinais , eIF-2 Quinase/metabolismo
14.
J Biol Chem ; 295(47): 15902-15912, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913118

RESUMO

The octapeptins are lipopeptide antibiotics that are structurally similar to polymyxins yet retain activity against polymyxin-resistant Gram-negative pathogens, suggesting they might be used to treat recalcitrant infections. However, the basis of their unique activity is unclear because of the difficulty in generating high-resolution experimental data of the interaction of antimicrobial peptides with lipid membranes. To elucidate these structure-activity relationships, we employed all-atom molecular dynamics simulations with umbrella sampling to investigate the conformational and energetic landscape of octapeptins interacting with bacterial outer membrane (OM). Specifically, we examined the interaction of octapeptin C4 and FADDI-115, lacking a single hydroxyl group compared with octapeptin C4, with the lipid A-phosphoethanolamine modified OM of Acinetobacter baumannii Octapeptin C4 and FADDI-115 both penetrated into the OM hydrophobic center but experienced different conformational transitions from an unfolded to a folded state that was highly dependent on the structural flexibility of their respective N-terminal fatty acyl groups. The additional hydroxyl group present in the fatty acyl group of octapeptin C4 resulted in the molecule becoming trapped in a semifolded state, leading to a higher free energy barrier for OM penetration. The free energy barrier for the translocation through the OM hydrophobic layer was ∼72 kcal/mol for octapeptin C4 and 62 kcal/mol for FADDI-115. Our results help to explain the lower antimicrobial activity previously observed for octapeptin C4 compared with FADDI-115 and more broadly improve our understanding of the structure-function relationships of octapeptins. These findings may facilitate the discovery of next-generation octapeptins against polymyxin-resistant Gram-negative 'superbugs.'


Assuntos
Acinetobacter baumannii/química , Membrana Celular/química , Lipopeptídeos/química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
15.
Environ Microbiol ; 23(2): 1115-1129, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985765

RESUMO

Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/metabolismo , Óxido Ferroso-Férrico/análise , Filogenia , Alphaproteobacteria/citologia , Alphaproteobacteria/genética , Biomineralização , Óxido Ferroso-Férrico/metabolismo , Sedimentos Geológicos/microbiologia , Magnetossomos/química , Magnetossomos/metabolismo , Magnetossomos/ultraestrutura , Especificidade da Espécie
16.
Appl Microbiol Biotechnol ; 105(2): 707-723, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33386896

RESUMO

A novel protease-producing Bacillus sp. CN2 isolated from chicken manure composts exhibited a relatively high proteolytic specific activity. The strain CN2 degradome consisted of at least 149 proteases and homolog candidates, which were distributed into 4 aspartic, 30 cysteine, 55 metallo, 56 serine, and 4 threonine proteases. Extracellular proteolytic activity was almost completely inhibited by PMSF (phenylmethylsulfonyl fluoride) rather than o-P, E-64, or pepstatin A, suggesting that strain CN2 primarily secreted serine protease. More importantly, analysis of the extracellular proteome of strain CN2 revealed the presence of a highly efficient protein degradation system. Three serine proteases of the S8 family with different active site architectures firstly fragmented protein substrates which were then degraded to smaller peptides by a M4 metalloendopeptidase that prefers to degrade hydrophobic peptides and by a S13 carboxypeptidase. Those enzymes acted synergistically to degrade intact substrate proteins outside the cell. Furthermore, highly expressed sequence-specific intracellular aminopeptidases from multiple families (M20, M29, and M42) accurately degraded peptides into oligopeptides or amino acids, thus realizing the rapid acquisition and utilization of nitrogen sources. In this paper, a systematic study of the functional-degradome provided a new perspective for understanding the complexity of the protease hydrolysis system of Bacillus, and laid a solid foundation for further studying the precise degradation of proteins with the cooperative action of different family proteases. KEY POINTS: • Bacillus sp. CN2 has relatively high proteolytic specific activity. • Bacillus sp. CN2 harbors a highly efficient protein degradation system. • The site-specific endopeptidases were secreted extracellular, while the sequence-specific aminopeptidases played a role in the cell.


Assuntos
Bacillus , Bacillus/metabolismo , Hidrólise , Peptídeo Hidrolases/metabolismo , Proteólise , Serina Endopeptidases/metabolismo
17.
Biotechnol Lett ; 43(6): 1175-1182, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575897

RESUMO

OBJECTIVE: To achieve continuous production of fructooligosaccharides (FOS) by recycling of the mycelial cells containing the thermal-stable ß-fructofuranosidase in Aspergillus niger without immobilization. RESULTS: The thermal-stable ß-fructofuranosidase FopA-V1 was successfully expressed in A. niger ATCC 20611 under the control of the constitutive promoter PgpdA. The engineered A. niger strain FV1-11 produced the ß-fructofuranosidase with improved thermostability, which remained 91.2% of initial activity at 50 °C for 30 h. Then its mycelial ß-fructofuranosidase was recycled for the synthesis of FOS. It was found that the enzyme still had 79.3% of initial activity after being reused for six consecutive cycles, whereas only 62.3% ß-fructofuranosidase activity was detected in the parental strain ATCC 20611. Meanwhile, the FOS yield of FV1-11 after six consecutive cycles reached 57.1% (w/w), but only 51.0% FOS yield was detected in ATCC 20611. CONCLUSIONS: The thermal-stable ß-fructofuranosidase produced by A. niger can be recycled to achieve continuous synthesis of FOS with high efficiency, providing a powerful and economical strategy for the industrial production of FOS.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Oligossacarídeos/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Termodinâmica , beta-Frutofuranosidase/química
18.
J Basic Microbiol ; 61(2): 122-132, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393718

RESUMO

The filamentous fungus Trichoderma reesei is an important producer of industrial enzymes, and possesses abundant extracellular protease genes based on the genome sequence data. However, the production of extracellular proteases remains poorly understood. Here, protease production was extensively investigated on different carbon (glucose and lactose) and nitrogen sources ((NH4 )2 SO4 , NaNO3 , peptone, and corn steep liquor). It was found that protease production was dominantly regulated by nitrogen sources. Organic nitrogen sources were beneficial for protease production, while the preferred nitrogen source (NH4 )2 SO4 inhibited the expression of proteases. As for carbon sources, lactose was a more effective inducer than glucose for protease production. The protease activity was further examined by protease inhibitors, which suggested that protease activity was predominantly inhibited by phenylmethanesulfonyl fluoride (PMSF) and slightly suppressed by ethylenediaminetetraacetic acid (EDTA). Moreover, proteomic analysis revealed a total of 29 extracellular proteases, including 13 serine proteases, 6 aspartic proteases, and 10 metalloproteases. In addition, seven proteases were found to be present among all conditions. These results showed the regulatory profile of extracellular protease production in Trichoderma reesei grown on various carbon and nitrogen sources, which will facilitate the development of T. reesei to be an effective workhorse for enzyme or high-value protein production in industry.


Assuntos
Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Hypocreales/metabolismo , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Carbono/química , Meios de Cultura/metabolismo , Proteínas Fúngicas/classificação , Hypocreales/crescimento & desenvolvimento , Nitrogênio/química , Peptídeo Hidrolases/classificação , Inibidores de Proteases/metabolismo , Proteômica
19.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073858

RESUMO

The discovery or engineering of fungus-derived FAD-dependent glucose 1-dehydrogenase (FAD-GDH) is especially important in the fabrication and performance of glucose biosensors. In this study, a novel FAD-GDH gene, phylogenetically distantly with other FAD-GDHs from Aspergillus species, was identified. Additionally, the wild-type GDH enzyme, and its fusion enzyme (GDH-NL-CBM2) with a carbohydrate binding module family 2 (CBM2) tag attached by a natural linker (NL), were successfully heterogeneously expressed. In addition, while the GDH was randomly immobilized on the electrode by conventional methods, the GDH-NL-CBM2 was orientationally immobilized on the nanocellulose-modified electrode by the CBM2 affinity adsorption tag through a simple one-step approach. A comparison of the performance of the two electrodes demonstrated that both electrodes responded linearly to glucose in the range of 0.12 to 40.7 mM with a coefficient of determination R2 > 0.999, but the sensitivity of immobilized GDH-NL-CBM2 (2.1362 × 10-2 A/(M*cm2)) was about 1-fold higher than that of GDH (1.2067 × 10-2 A/(M*cm2)). Moreover, a lower detection limit (51 µM), better reproducibility (<5%) and stability, and shorter response time (≈18 s) and activation time were observed for the GDH-NL-CBM2-modified electrode. This facile and easy immobilization approach used in the preparation of a GDH biosensor may open up new avenues in the development of high-performance amperometric biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose 1-Desidrogenase/metabolismo , Glucose/análise , Animais , Aspergillus flavus/química , Aspergillus flavus/metabolismo , Técnicas Biossensoriais/instrumentação , Glicemia/análise , Eletrodos , Enzimas Imobilizadas/química , Escherichia coli/metabolismo , Fungos/química , Expressão Gênica , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Filogenia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Alinhamento de Sequência , Temperatura
20.
BMC Bioinformatics ; 21(1): 512, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167861

RESUMO

BACKGROUND: An enzyme activity is influenced by the external environment. It is important to have an enzyme remain high activity in a specific condition. A usual way is to first determine the optimal condition of an enzyme by either the gradient test or by tertiary structure, and then to use protein engineering to mutate a wild type enzyme for a higher activity in an expected condition. RESULTS: In this paper, we investigate the optimal condition of an enzyme by directly analyzing the sequence. We propose an embedding method to represent the amino acids and the structural information as vectors in the latent space. These vectors contain information about the correlations between amino acids and sites in the aligned amino acid sequences, as well as the correlation with the optimal condition. We crawled and processed the amino acid sequences in the glycoside hydrolase GH11 family, and got 125 amino acid sequences with optimal pH condition. We used probabilistic approximation method to implement the embedding learning method on these samples. Based on these embedding vectors, we design a computational score to determine which one has a better optimal condition for two given amino acid sequences and achieves the accuracy 80% on the test proteins in the same family. We also give the mutation suggestion such that it has a higher activity in an expected environment, which is consistent with the previously professional wet experiments and analysis. CONCLUSION: A new computational method is proposed for the sequence based on the enzyme optimal condition analysis. Compared with the traditional process that involves a lot of wet experiments and requires multiple mutations, this method can give recommendations on the direction and location of amino acid substitution with reference significance for an expected condition in an efficient and effective way.


Assuntos
Biologia Computacional/métodos , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa