Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.616
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunol Rev ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683173

RESUMO

White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.

2.
N Engl J Med ; 390(14): 1265-1276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38598794

RESUMO

BACKGROUND: Platinum-based chemotherapy is the recommended adjuvant treatment for patients with resectable, ALK-positive non-small-cell lung cancer (NSCLC). Data on the efficacy and safety of adjuvant alectinib as compared with chemotherapy in patients with resected ALK-positive NSCLC are lacking. METHODS: We conducted a global, phase 3, open-label, randomized trial in which patients with completely resected, ALK-positive NSCLC of stage IB (tumors ≥4 cm), II, or IIIA (as classified according to the seventh edition of the Cancer Staging Manual of the American Joint Committee on Cancer and Union for International Cancer Control) were randomly assigned in a 1:1 ratio to receive oral alectinib (600 mg twice daily) for 24 months or intravenous platinum-based chemotherapy in four 21-day cycles. The primary end point was disease-free survival, tested hierarchically among patients with stage II or IIIA disease and then in the intention-to-treat population. Other end points included central nervous system (CNS) disease-free survival, overall survival, and safety. RESULTS: In total, 257 patients were randomly assigned to receive alectinib (130 patients) or chemotherapy (127 patients). The percentage of patients alive and disease-free at 2 years was 93.8% in the alectinib group and 63.0% in the chemotherapy group among patients with stage II or IIIA disease (hazard ratio for disease recurrence or death, 0.24; 95% confidence interval [CI], 0.13 to 0.45; P<0.001) and 93.6% and 63.7%, respectively, in the intention-to-treat population (hazard ratio, 0.24; 95% CI, 0.13 to 0.43; P<0.001). Alectinib was associated with a clinically meaningful benefit with respect to CNS disease-free survival as compared with chemotherapy (hazard ratio for CNS disease recurrence or death, 0.22; 95% CI, 0.08 to 0.58). Data for overall survival were immature. No unexpected safety findings were observed. CONCLUSIONS: Among patients with resected ALK-positive NSCLC of stage IB, II, or IIIA, adjuvant alectinib significantly improved disease-free survival as compared with platinum-based chemotherapy. (Funded by F. Hoffmann-La Roche; ALINA ClinicalTrials.gov number, NCT03456076.).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos de Platina , Humanos , Carbazóis/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Recidiva Local de Neoplasia/tratamento farmacológico , Piperidinas/uso terapêutico , Receptores Proteína Tirosina Quinases , Resultado do Tratamento , Administração Oral , Administração Intravenosa , Compostos de Platina/uso terapêutico , Antineoplásicos/uso terapêutico
3.
Nature ; 592(7855): 606-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658717

RESUMO

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.


Assuntos
Mucosa Intestinal/citologia , MAP Quinase Quinase Quinase 2/metabolismo , Nicho de Células-Tronco , Células Estromais/citologia , Animais , Antígenos CD34 , Colite/patologia , Colite/prevenção & controle , Epigênese Genética , Feminino , Mucosa Intestinal/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tetraspanina 28 , Trombospondinas/biossíntese , Trombospondinas/metabolismo , Antígenos Thy-1
4.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36719094

RESUMO

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Perfilação da Expressão Gênica , Transcriptoma
5.
Plant Cell ; 34(3): 1054-1074, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935984

RESUMO

Development of the endosperm is strikingly different in monocots and dicots: it often manifests as a persistent tissue in the former and transient tissue in the latter. Little is known about the controlling mechanisms responsible for these different outcomes. Here we characterized a maize (Zea mays) mutant, endosperm breakdown1 (enb1), in which the typically persistent endosperm (PE) was drastically degraded during kernel development. ENB1 encodes a cellulose synthase 5 that is predominantly expressed in the basal endosperm transfer layer (BETL) of endosperm cells. Loss of ENB1 function caused a drastic reduction in formation of flange cell wall ingrowths (ingrowths) in BETL cells. Defective ingrowths impair nutrient uptake, leading to premature utilization of endosperm starch to nourish the embryo. Similarly, developing wild-type kernels cultured in vitro with a low level of sucrose manifested early endosperm breakdown. ENB1 expression is induced by sucrose via the BETL-specific Myb-Related Protein1 transcription factor. Overexpression of ENB1 enhanced development of flange ingrowths, facilitating sucrose transport into BETL cells and increasing kernel weight. The results demonstrated that ENB1 enhances sucrose supply to the endosperm and contributes to a PE in the kernel.


Assuntos
Endosperma , Zea mays , Parede Celular/metabolismo , Endosperma/metabolismo , Glucosiltransferases , Sacarose/metabolismo , Zea mays/metabolismo
6.
J Immunol ; 211(1): 43-56, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154687

RESUMO

The Hippo signaling pathway plays important roles in innate immunity. In the current study, we found that bacterial infection did not influence mRNA and protein levels of yorkie (Yki), which is an important terminal molecule of the Hippo signaling pathway. However, bacterial infection promoted the translocation of Yki from the nucleus to the cytoplasm in Chinese mitten crab (Eriocheir sinensis), thus attenuating Yki-suppressed transcription of antimicrobial peptides through Cactus. Chromosome region maintenance 1 (CRM1)-silenced crab hemocytes significantly suppressed Yki translocation from the nucleus to the cytoplasm upon bacterial infection, resulting in significantly increased expression of Cactus, decreased expression of antimicrobial peptides, and higher bacterial susceptibility, which demonstrated the regulatory role of CRM1 in subcellular localization of Yki. However, RNA interference of Scalloped (Sd) exhibited no effect on the subcellular localization of Yki and its regulation of Cactus/antimicrobial peptides. Moreover, we elucidated that both CRM1 and Sd could interact with Yki and that the PRP4K-mediated phosphorylation of a conserved serine amino acid residue in the nuclear export signal of Yki is essential for interaction between Yki and CRM1; however, the phosphorylation did not affect the binding of Yki with Sd. We also found that bacterial infection significantly promoted the expression of PRP4K in hemocytes; RNA interference of PRP4K and phosphatase inhibitor suppressed Yki translocation from the nucleus to the cytoplasm, promoting Cactus expression and inhibiting antimicrobial peptide expression. Thus, subcellular localization of Yki regulates antibacterial infection through both PRP4K and CRM1 in crabs.


Assuntos
Infecções Bacterianas , Proteínas de Drosophila , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/fisiologia , Proteínas Nucleares/genética
7.
Mol Cell ; 65(5): 818-831.e5, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28216227

RESUMO

Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.


Assuntos
Dano ao DNA , Quinases Relacionadas a NIMA/metabolismo , Estresse Oxidativo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/enzimologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Quinases Relacionadas a NIMA/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Interferência de RNA , Complexo Shelterina , Telômero/genética , Telômero/efeitos da radiação , Proteínas de Ligação a Telômeros/genética , Fatores de Tempo , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
8.
Drug Resist Updat ; 73: 101057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266355

RESUMO

AIMS: Lung cancer is the leading cause of cancer mortality and lung adenocarcinoma (LUAD) accounts for more than half of all lung cancer cases. Tumor elimination is mostly hindered by drug resistance and the mechanisms remain to be explored in LUAD. METHODS: CRISPR screens in cell and murine models and single-cell RNA sequencing were conducted, which identified MAF bZIP transcription factor F (MAFF) as a critical factor regulating tumor growth and treatment resistance in LUAD. RNA and ChIP sequencing analyses were performed for transcriptional target expression and specific binding sites of MAFF. Functions of MAFF in inhibiting tumor growth and promoting cisplatin or irradiation efficacy were investigated using cellular and xenograft models. RESULTS: Patients with lung adenocarcinoma and reduced MAFF expression had worse clinical outcomes. MAFF inhibited tumor cell proliferation by regulating the expression of SLC7A11, CDK6, and CDKN2C, promoting ferroptosis and preventing cell cycle progression from G1 to S. MAFF also conferred tumor cells vulnerable to cisplatin-based or ionizing radiation treatments. MAFF reduction was a final event in the acquisition of cisplatin resistance of LUAD cells. The intracellular cAMP/PKA/CREB1 pathway upregulated MAFF in response to cisplatin-based or ionizing radiation treatments. CONCLUSIONS: MAFF suppresses tumor growth, and pharmacological agonists targeting MAFF may improve cisplatin or irradiation therapies for lung adenocarcinoma patients.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ferroptose/genética , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Proliferação de Células , Ciclo Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/uso terapêutico , Fator de Transcrição MafF
9.
Anal Chem ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887964

RESUMO

Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.

10.
Breast Cancer Res Treat ; 205(1): 193-199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286889

RESUMO

INTRODUCTION: For patients with locally advanced triple negative breast cancer (TNBC), the standard of care is to administer the KEYNOTE-522 (K522) regimen, including chemotherapy and immunotherapy (pembrolizumab) given in the neoadjuvant setting. Pathological complete response (pCR) is more likely in patients who receive the K522 regimen than in patients who receive standard chemotherapy. Studies have shown that pCR is a strong predictor of long-term disease-free survival. However, factors predicting pCR to K522 are not well understood and require further study in real-world populations. METHODS: We evaluated 76 patients who were treated with the K522 regimen at our institution. Twenty-nine pre-treatment biopsy slides were available for pathology review. Nuclear grade, Nottingham histologic grade, Ki-67, lymphovascular invasion, and tumor infiltrating lymphocytes (TIL) were evaluated in these 29 cases. For the cases that did not have available slides for review from pre-treatment biopsies, these variables were retrieved from available pathology reports. In addition, clinical staging, race, and BMI at the time of biopsy were retrieved from all 76 patients' charts. Binary logistic regression models were used to correlate these variables with pCR. RESULTS: At the current time, 64 of 76 patients have undergone surgery at our institution following completion of K522 and 31 (48.4%) of these achieved pCR. In univariate analysis, only TIL was significantly associated with pCR (p = 0.014) and this finding was also confirmed in multivariate analysis, whereas other variables including age, race, nuclear grade, Nottingham grade, Ki-67, lymphovascular invasion, BMI, pre-treatment tumor size, and lymph node status were not associated with pCR (p > 0.1). CONCLUSION: Our real-world data demonstrates high TIL is significantly associated with pCR rate in the K522 regimen and may potentially serve as a biomarker to select optimal treatment. The pCR rate of 48.4% in our study is lower than that reported in K522, potentially due to the smaller size of our study; however, this may also indicate differences between real-world data and clinical trial results. Larger studies are warranted to further investigate the role of immune cells in TNBC response to K522 and other treatment regimens.


Assuntos
Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Adulto , Idoso , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Estadiamento de Neoplasias , Imunoterapia/métodos , Gradação de Tumores , Prognóstico
11.
Breast Cancer Res Treat ; 204(2): 415-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157098

RESUMO

PURPOSE: Ki-67 expression levels in breast cancer have prognostic and predictive significance. Therefore, accurate Ki-67 evaluation is important for optimal patient care. Although an algorithm developed by the International Ki-67 in Breast Cancer Working Group (IKWG) improves interobserver variability, it is tedious and time-consuming. In this study, we simplify IKWG algorithm and evaluate its interobserver agreement among breast pathologists in Ki-67 evaluation. METHODS: Six subspecialized breast pathologists (4 juniors, 2 seniors) assessed the percentage of positive cells in 5% increments in 57 immunostained Ki-67 slides. The time spent on each slide was recorded. Two rounds of ring study (R1, R2) were performed before and after training with the modified IKWG algorithm (eyeballing method at 400× instead of counting 100 tumor nuclei per area). Concordance was assessed using Kendall's and Kappa coefficients. RESULTS: Analysis of ordinal scale ratings for all categories with 5% increments showed almost perfect agreement in R1 (0.821) and substantial in R2 (0.793); Seniors and juniors had substantial agreement in R1 (0.718 vs. 0.649) and R2 (0.756 vs. 0.658). In dichotomous scale analysis using 20% as the cutoff, the overall agreement was moderate in R1 (0.437) and R2 (0.479), among seniors (R1: 0.436; R2: 0.437) and juniors (R1: 0.445; R2: 0.505). Average scoring time per case was higher in R2 (71 vs. 37 s). CONCLUSION: The modified IKWG algorithm does not significantly improve interobserver agreement. A better algorithm or assistance from digital image analysis is needed to improve interobserver variability in Ki-67 evaluation.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Antígeno Ki-67/metabolismo , Variações Dependentes do Observador , Patologistas , Mama/patologia , Reprodutibilidade dos Testes
12.
BMC Med ; 22(1): 244, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867192

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a common stroke type with high morbidity and mortality. There are mainly three surgical methods for treating ICH. Unfortunately, thus far, no specific surgical method has been proven to be the most effective. We carried out this study to investigate whether minimally invasive surgeries with endoscopic surgery or stereotactic aspiration (frameless navigated aspiration) will improve functional outcomes in patients with supratentorial ICH compared with small-bone flap craniotomy. METHODS: In this parallel-group multicenter randomized controlled trial conducted at 16 centers, patients with supratentorial hypertensive ICH were randomized to receive endoscopic surgery, stereotactic aspiration, or craniotomy at a 1:1:1 ratio from July 2016 to June 2022. The follow-up duration was 6 months. Patients were randomized to receive endoscopic evacuation, stereotactic aspiration, or small-bone flap craniotomy. The primary outcome was favorable functional outcome, defined as the proportion of patients who achieved a modified Rankin scale (mRS) score of 0-2 at the 6-month follow-up. RESULTS: A total of 733 patients were randomly allocated to three groups: 243 to the endoscopy group, 247 to the aspiration group, and 243 to the craniotomy group. Finally, 721 patients (239 in the endoscopy group, 246 in the aspiration group, and 236 in the craniotomy group) received treatment and were included in the intention-to-treat analysis. Primary efficacy analysis revealed that 73 of 219 (33.3%) in the endoscopy group, 72 of 220 (32.7%) in the aspiration group, and 47 of 212 (22.2%) in the craniotomy group achieved favorable functional outcome at the 6-month follow-up (P = .017). We got similar results in subgroup analysis of deep hemorrhages, while in lobar hemorrhages the prognostic outcome was similar among three groups. Old age, deep hematoma location, large hematoma volume, low preoperative GCS score, craniotomy, and intracranial infection were associated with greater odds of unfavorable outcomes. The mean hospitalization expenses were ¥92,420 in the endoscopy group, ¥77,351 in the aspiration group, and ¥100,947 in the craniotomy group (P = .000). CONCLUSIONS: Compared with small bone flap craniotomy, endoscopic surgery and stereotactic aspiration improved the long-term outcome of hypertensive ICH, especially deep hemorrhages. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02811614.


Assuntos
Craniotomia , Hemorragia Intracraniana Hipertensiva , Procedimentos Cirúrgicos Minimamente Invasivos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Hemorragia Intracraniana Hipertensiva/cirurgia , Idoso , Craniotomia/métodos , Resultado do Tratamento , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Endoscopia/métodos , Adulto
13.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822367

RESUMO

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Assuntos
Proteínas Correpressoras , Interleucina-10 , Camundongos Knockout , Microglia , Doenças Neuroinflamatórias , PPAR gama , Transdução de Sinais , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Depressão/metabolismo , Depressão/etiologia , Interleucina-10/metabolismo , Interleucina-10/deficiência , Interleucina-10/genética , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doenças Neuroinflamatórias/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos
14.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35794722

RESUMO

Drug target discovery is an essential step to reveal the mechanism of action (MoA) underlying drug therapeutic effects and/or side effects. Most of the approaches are usually labor-intensive while unable to identify the tissue-specific interacting targets, especially the targets with weaker drug binding affinity. In this work, we proposed an integrated pipeline, FL-DTD, to predict the drug interacting targets of novel compounds in a tissue-specific manner. This method was built based on a hypothesis that cells under a status of homeostasis would take responses to drug perturbation by activating feedback loops. Therefore, the drug interacting targets can be predicted by analyzing the network responses after drug perturbation. We evaluated this method using the expression data of estrogen stimulation, gene manipulation and drug perturbation and validated its good performance to identify the annotated drug targets. Using STAT3 as a target protein, we applied this method to drug perturbation data of 500 natural compounds and predicted five compounds with STAT3 interacting activities. Experimental assay validated the STAT3-interacting activities of four compounds. Overall, our evaluation suggests that FL-DTD predicts the drug interacting targets with good accuracy and can be used for drug target discovery.


Assuntos
Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Descoberta de Drogas/métodos , Retroalimentação
15.
Am J Pathol ; 193(7): 913-926, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088455

RESUMO

Dry eye syndrome is a common complication in diabetic patients with a prevalence of up to 54.3%. However, the pathogenic mechanisms underlying hyperglycemia-induced tear reduction and dry eye remain less understood. The present study indicated that both norepinephrine (NE) and tyrosine hydroxylase levels were elevated in the lacrimal gland of diabetic mice, accompanied by increased Fos proto-oncogene (c-FOS)+ cells in the superior cervical ganglion. However, the elimination of NE accumulation by surgical and chemical sympathectomy significantly ameliorated the reduction in tear production, suppressed abnormal inflammation of the lacrimal gland, and improved the severity of dry eye symptoms in diabetic mice. Among various adrenergic receptors (ARs), the α1 subtype played a predominant role in the regulation of tear production, as treatments of α1AR antagonists improved tear secretion in diabetic mice compared with ßAR antagonist propranolol. Moreover, the α1AR antagonist alfuzosin treatment also alleviated functional impairments of the meibomian gland and goblet cells in diabetic mice. Mechanically, the α1AR antagonist rescued the mitochondrial bioenergetic deficit, increased the mitochondrial DNA copy numbers, and elevated the glutathione levels of the diabetic lacrimal gland. Overall, these results deciphered a previously unrecognized involvement of the NE-α1AR-mitochondrial bioenergetics axis in the regulation of tear production in the lacrimal gland, which may provide a potential strategy to counteract diabetic dry eye by interfering with the α1AR activity.


Assuntos
Diabetes Mellitus Experimental , Síndromes do Olho Seco , Hiperglicemia , Lacerações , Aparelho Lacrimal , Camundongos , Animais , Aparelho Lacrimal/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Norepinefrina , Lágrimas , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/patologia , Hiperglicemia/complicações , Hiperglicemia/patologia , Lacerações/patologia , Receptores Adrenérgicos
16.
Stem Cells ; 41(6): 592-602, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061809

RESUMO

Corneal alkali burns cause extensive damage not only to the cornea but also to the intraocular tissues. As an anti-inflammatory therapy, subconjunctival administration of mesenchymal stem cells (MSCs) for corneal protection after corneal alkali burn has been explored. Little evidence demonstrates the potential of subconjunctival MSCs delivery in protecting the post-burn intraocular tissues. This study aimed to evaluate the therapeutic efficacy of subconjunctival injection of human placental (hP)-MSCs in protecting against ocular destruction after the burn. hP-MSCs were subconjunctivally administered to C57/BL mice after corneal alkali burn. Western blot of iNOS and CD206 was performed to determine the M1 and M2 macrophage infiltration in the cornea. Infiltration of inflammatory cells in the anterior uvea and retina was analyzed by flow cytometry. The TUNEL assay or Western blot of Bax and Bcl2 was used to evaluate the anti-apoptotic effects of MSCs. MSCs could effectively facilitate cornea repair by suppressing inflammatory cytokines IL-1ß, MCP-1, and MMP9, and polarizing CD206 positive M2 macrophages. Anterior uveal and retinal inflammatory cytokines expression and inflammatory cell infiltration were inhibited in the MSC-treated group. Reduced TUNEL positive staining and Bax/Bcl2 ratio indicated the anti-apoptosis of MSCs. MSC-conditioned medium promoted human corneal epithelial cell proliferation and regulated LPS-stimulated inflammation in RAW 264.7 macrophages, confirming the trophic and immunoregulatory effects of MSCs. Our findings demonstrate that subconjunctival administration of MSCs exerted anti-inflammatory and anti-apoptotic effects in the cornea, anterior uvea, and retina after corneal alkali burn. This strategy may provide a new direction for preventing post-event complications after corneal alkali burn.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Células-Tronco Mesenquimais , Gravidez , Camundongos , Feminino , Humanos , Animais , Queimaduras Químicas/tratamento farmacológico , Modelos Animais de Doenças , Álcalis/farmacologia , Álcalis/uso terapêutico , Proteína X Associada a bcl-2 , Placenta , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/terapia , Córnea , Inflamação , Anti-Inflamatórios , Citocinas/farmacologia
17.
Respir Res ; 25(1): 181, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664836

RESUMO

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS: In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS: We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS: This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.


Assuntos
Biomarcadores , DNA Circular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , DNA Circular/sangue , DNA Circular/genética , DNA Circular/análise , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/diagnóstico , Estudos de Coortes , Estudos de Casos e Controles
18.
FASEB J ; 37(10): e23210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738047

RESUMO

PYR-41 is an irreversible and cell permeable inhibitor of ubiquitin-activating enzyme E1, and has been reported to inhibit the degradation of IκB protein. Previous studies have shown that PYR-41 has effects on anti-inflammatory, but whether it has therapeutic effects on allergic dermatitis is unclear. The aim of this research was to explore the therapeutic effects of PYR-41 on atopic dermatitis. The effects of PYR-41 on the activation of NF-κB signaling pathway and the expression of inflammatory genes in HaCat cells were tested by western blot and qPCR. A mouse model was built, and the AD-like skin lesions were induced by 2,4-dinitrochlorobenzene (DNCB). Then, the treatment effects of PYR-41 were examined by skin severity score, ear swelling, ELISA, and qPCR. The results showed that PYR-41 can significantly reduce the K63-linked ubiquitination level of nuclear factor-κB essential modulator (NEMO) and tumor necrosis factor receptor associated factor 6 (TRAF6), inhibit the proteasomal degradation of IκBα, thereby activate TNF-α-induced NF-κB signaling pathway in HaCat cells. In addition, DNCB-treated mice have significant reduction in symptoms after treated by PYR-41, including reduced ear thickening and reduced skin damage. Serum tests showed that PYR-41 significantly reduced the expression of IgE, IFN-γ, and TNF-α. In conclusion, the current results suggest that PYR-41 has potential to reduce the symptoms of atopic dermatitis.


Assuntos
Dermatite Atópica , Dermatopatias , Animais , Camundongos , Enzimas Ativadoras de Ubiquitina , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno/toxicidade , Fator de Necrose Tumoral alfa , NF-kappa B , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico
19.
Neurochem Res ; 49(2): 427-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37875713

RESUMO

Recent studies have indicated that functional abnormalities in the KNa1.2 channel are linked to epileptic encephalopathies. However, the role of KNa1.2 channel in traumatic brain injury (TBI) remains limited. We collected brain tissue from the TBI mice and patients with post-traumatic epilepsy (PTE) to determine changes in KNa1.2 channel following TBI. We also investigated whether the MAPK pathway, which was activated by the released cytokines after injury, regulated KNa1.2 channel in in vitro. Finally, to elucidate the physiological significance of KNa1.2 channel in neuronal excitability, we utilized the null mutant-Kcnt2-/- mice and compared their behavior patterns, seizure susceptibility, and neuronal firing properties to wild type (WT) mice. TBI was induced in both Kcnt2-/- and WT mice to investigate any differences between the two groups under pathological condition. Our findings revealed that the expression of KNa1.2 channel was notably increased only during the acute phase following TBI, while no significant elevation was observed during the late phase. Furthermore, we identified the released cytokines and activated MAPK pathway in the neurons after TBI and confirmed that KNa1.2 channel was enhanced by the MAPK pathway via stimulation of TNF-α. Subsequently, compared to WT mice, neurons from Kcnt2-/- mice showed increased neuronal excitability and Kcnt2-/- mice displayed motor deficits and enhanced seizure susceptibility, which suggested that KNa1.2 channel may be neuroprotective. Therefore, this study suggests that enhanced KNa1.2 channel, facilitated by the inflammatory response, may exert a protective role in an acute phase of the TBI model.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Camundongos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Convulsões/metabolismo , Neurônios/metabolismo , Citocinas/metabolismo
20.
Mol Cell Biochem ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480605

RESUMO

Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3ß, and cytoplasmic and nuclear ß-catenin protein levels, ß-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/ß-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3ß, cytoplasmic ß-catenin, nuclear ß-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/ß-catenin pathway through downregulating RUNX1.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa