Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lung ; 202(3): 343-356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678499

RESUMO

BACKGROUND: Severe asthma, characterized by inflammation and airway remodeling, involves fibroblast differentiation into myofibroblasts expressing α-SMA. This process leads to the production of fibronectin and connective tissue growth factor (CTGF), driven by factors such as transforming growth factor (TGF)-ß. Furthermore, the persistent presence of myofibroblasts is associated with resistance to apoptosis and mitochondrial dysfunction. The chemokine (C-X3-C motif) ligand 1 (CX3CL1) plays a role in tissue fibrosis. However, it is currently unknown whether neutralization of CX3CL1 decreases TGF-ß-induced fibroblast differentiation and mitochondrial dysfunction in normal human lung fibroblasts (NHLFs). METHODS: CX3CL1/C-X3-C motif chemokine receptor 1 (CX3CR1), CX3CL1 was analyzed by immunofluorescence (IF) or immunohistochemical (IHC) staining of ovalbumin-challenged mice. CX3CL1 release was detected by ELISA. TGF-ß-induced CTGF, fibronectin, and α-SMA expression were evaluated in NHLFs following neutralization of CX3CL1 (TP213) treatment for the indicated times by Western blotting or IF staining. Mitochondrion function was detected by a JC-1 assay and seahorse assay. Cell apoptosis was observed by a terminal uridine nick-end labeling (TUNEL) assay. RESULTS: An increase in CX3CL1 expression was observed in lung tissues from mice with ovalbumin-induced asthma by IF staining. CX3CR1 was increased in the subepithelial layer of the airway by IHC staining. Moreover, CX3CR1 small interfering (si)RNA downregulated TGF-ß-induced CTGF and fibronectin expression in NHLFs. CX3CL1 induced CTGF and fibronectin expression in NHLFs. TGF-ß-induced CX3CL1 secretion from NHLFs. Furthermore, TP213 decreased TGF-ß-induced CTGF, fibronectin, and α-SMA expression in NHLFs. Mitochondrion-related differentially expressed genes (DEGs) were examined after CX3CL1 neutralization in TGF-ß-treated NHLFs. TP213 alleviated TGF-ß-induced mitochondrial dysfunction and apoptosis resistance in NHLFs. CX3CL1 induced p65, IκBα, and IKKα phosphorylation in a time-dependent manner. Furthermore, CX3CL1-induced fibronectin expression and JC-1 monomer were decreased by p65 siRNA. TP213 reduced TGF-ß-induced p65 and α-SMA expression in NHLFs. CONCLUSIONS: These findings suggest that neutralizing CX3CL1 attenuates lung fibroblast activation and mitochondrial dysfunction. Understanding the impacts of CX3CL1 neutralization on fibroblast mitochondrial function could contribute to the development of therapeutic strategies for managing airway remodeling in severe asthma.


Assuntos
Apoptose , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Quimiocina CX3CL1 , Fator de Crescimento do Tecido Conjuntivo , Fibroblastos , Fibronectinas , Mitocôndrias , Fibrose Pulmonar , Fator de Crescimento Transformador beta , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Humanos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Diferenciação Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Fibronectinas/metabolismo , Camundongos , Actinas/metabolismo , Pulmão/patologia , Pulmão/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Asma/metabolismo , Asma/patologia , Modelos Animais de Doenças , Células Cultivadas , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Miofibroblastos/efeitos dos fármacos , Ovalbumina
2.
J Formos Med Assoc ; 123(1): 23-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37573159

RESUMO

BACKGROUND/PURPOSE: To develop a prediction model for emergency medical technicians (EMTs) to identify trauma patients at high risk of deterioration to emergency medical service (EMS)-witnessed traumatic cardiac arrest (TCA) on the scene or en route. METHODS: We developed a prediction model using the classical cross-validation method from the Pan-Asia Trauma Outcomes Study (PATOS) database from 1 January 2015 to 31 December 2020. Eligible patients aged ≥18 years were transported to the hospital by the EMS. The primary outcome (EMS-witnessed TCA) was defined based on changes in vital signs measured on the scene or en route. We included variables that were immediately measurable as potential predictors when EMTs arrived. An integer point value system was built using multivariable logistic regression. The area under the receiver operating characteristic (AUROC) curve and Hosmer-Lemeshow (HL) test were used to examine discrimination and calibration in the derivation and validation cohorts. RESULTS: In total, 74,844 patients were eligible for database review. The model comprised five prehospital predictors: age <40 years, systolic blood pressure <100 mmHg, respiration rate >20/minute, pulse oximetry <94%, and levels of consciousness to pain or unresponsiveness. The AUROC in the derivation and validation cohorts was 0.767 and 0.782, respectively. The HL test revealed good calibration of the model (p = 0.906). CONCLUSION: We established a prediction model using variables from the PATOS database and measured them immediately after EMS personnel arrived to predict EMS-witnessed TCA. The model allows prehospital medical personnel to focus on high-risk patients and promptly administer optimal treatment.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Auxiliares de Emergência , Parada Cardíaca Extra-Hospitalar , Humanos , Adolescente , Adulto , Parada Cardíaca Extra-Hospitalar/terapia , Hospitais , Estudos de Coortes
3.
Proc Natl Acad Sci U S A ; 117(40): 24794-24801, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958639

RESUMO

The structure of lincomycin A consists of the unusual eight-carbon thiosugar core methyllincosamide (MTL) decorated with a pendent N-methylprolinyl moiety. Previous studies on MTL biosynthesis have suggested GDP-ᴅ-erythro-α-ᴅ-gluco-octose and GDP-ᴅ-α-ᴅ-lincosamide as key intermediates in the pathway. However, the enzyme-catalyzed reactions resulting in the conversion of GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide have not yet been elucidated. Herein, a biosynthetic subpathway involving the activities of four enzymes-LmbM, LmbL, CcbZ, and CcbS (the LmbZ and LmbS equivalents in the closely related celesticetin pathway)-is reported. These enzymes catalyze the previously unknown biosynthetic steps including 6-epimerization, 6,8-dehydration, 4-epimerization, and 6-transamination that convert GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide. Identification of these reactions completes the description of the entire lincomycin biosynthetic pathway. This work is significant since it not only resolves the missing link in octose core assembly of a thiosugar-containing natural product but also showcases the sophistication in catalytic logic of enzymes involved in carbohydrate transformations.


Assuntos
Lincomicina/biossíntese , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Lincomicina/química , Lincosamidas/química , Lincosamidas/metabolismo , Streptomyces/química , Streptomyces/enzimologia , Streptomyces/genética
4.
Proc Natl Acad Sci U S A ; 117(19): 10265-10270, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350138

RESUMO

Coformycin and pentostatin are structurally related N-nucleoside inhibitors of adenosine deaminase characterized by an unusual 1,3-diazepine nucleobase. Herein, the cof gene cluster responsible for coformycin biosynthesis is identified. Reconstitution of the coformycin biosynthetic pathway in vitro demonstrates that it overlaps significantly with the early stages of l-histidine biosynthesis. Committed entry into the coformycin pathway takes place via conversion of a shared branch point intermediate to 8-ketocoformycin-[Formula: see text]-monophosphate catalyzed by CofB, which is a homolog of succinylaminoimidazolecarboxamide ribotide (SAICAR) synthetase. This reaction appears to proceed via a Dieckmann cyclization and a retro-aldol elimination, releasing ammonia and D-erythronate-4-phosphate as coproducts. Completion of coformycin biosynthesis involves reduction and dephosphorylation of the CofB product, with the former reaction being catalyzed by the NADPH-dependent dehydrogenase CofA. CofB also shows activation by adenosine triphosphate (ATP) despite the reaction requiring neither a phosphorylated nor an adenylated intermediate. This may serve to help regulate metabolic partitioning between the l-histidine and coformycin pathways.


Assuntos
Adenosina Desaminase/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Coformicina/biossíntese , Família Multigênica , Streptomyces/genética , Adenosina Desaminase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Fosforilação , Streptomyces/metabolismo
5.
J Emerg Med ; 65(6): e517-e521, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838493

RESUMO

BACKGROUND: Pneumocephalus is defined as gas in the intracranial space. Common causes include head trauma, surgery, and diagnostic/therapeutic procedures resulting from the direct disruption of the dura. Spontaneous or nontraumatic pneumocephalus is an uncommon condition, often caused by infection, either due to insidious disruption of the dura or gas-forming pathogens. CASE REPORT: Herein, we report a rare case of spontaneous pneumocephalus associated with meningitis in a patient who received conservative treatment without surgical intervention. Blood culture revealed group A streptococcus. The pneumocephalus subsided gradually with antibiotic treatment, and no neurological deficits remained. A follow-up brain computed tomography scan showed the absence of pneumocephalus, but it showed progressive hydrocephalus. The patient was discharged on the 21st day of hospitalization. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Spontaneous pneumocephalus associated with meningitis is rare. It should always raise the suspicion of meningitis and prompt suitable treatment. Emergency physicians should always be vigilant for this particular possibility on brain computed tomography.


Assuntos
Meningite , Pneumocefalia , Humanos , Pneumocefalia/etiologia , Pneumocefalia/complicações , Meningite/complicações , Neuroimagem
6.
J Formos Med Assoc ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838538

RESUMO

BACKGROUND/PURPOSE: This review aimed to investigate the effect of crew ratios of on-scene advanced life support (ALS)-trained personnel on patients with out-of-hospital cardiac arrest (OHCA). METHODS: We systematically searched PubMed, Ovid EMBASE, and the Cochrane Central Register of Controlled Trials databases from the inception date until September 30, 2022, for eligible studies. Two reviewers independently screened the studies for relevance, extracted data, and quality. We compared the effect of the ratio of on-scene ALS-trained personnel >50 % to those with a ratio ≤50 % among prehospital personnel on the clinical outcomes of OHCA patients. The primary outcome was survival-to-discharge and secondary outcomes were any return of spontaneous circulation (ROSC), sustained ROSC (≥2 h), and favourable neurological outcome at discharge (cerebral performance category scores: 1 or 2). Pooled odds ratios (ORs) were calculated, and the certainty of evidence was assessed. RESULTS: From 10,864 references, we identified four non-randomised studies, including 16,475 patients. Two studies were performed in Japan and two in Taiwan. There were significant differences in survival-to-discharge (OR: 1.24, 95 % confidence interval [CI]: 1.07-1.44, I2: 7 %), any ROSC (OR:1.22, 95 % CI: 1.04-1.43, I2: 74 %) and sustained ROSC (OR: 1.39, 95 % CI: 1.16-1.65, I2: 40 %), but insignificant differences in favourable neurological outcome at discharge. The overall certainty of evidence was rated as very low for all outcomes. CONCLUSION: Prehospital ALS care with a ratio of on-scene ALS-trained personnel >50 % could improve OHCA patient outcomes than crew ratios ≤50 %. Further studies are required to reach a robust conclusion.

7.
J Am Chem Soc ; 144(24): 10968-10977, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35687050

RESUMO

Oxazinomycin is a C-nucleoside natural product with antibacterial and antitumor activities. In addition to the characteristic C-glycosidic linkage shared with other C-nucleosides, oxazinomycin also features a structurally unusual 1,3-oxazine moiety, the biosynthesis of which had previously been unknown. Herein, complete in vitro reconstitution of the oxazinomycin biosynthetic pathway is described. Construction of the C-glycosidic bond between ribose 5-phosphate and an oxygen-labile pyridine heterocycle is catalyzed by the C-glycosidase OzmB and involves formation of an enzyme-substrate Schiff base intermediate. The DUF4243 family protein OzmD is shown to catalyze oxygen insertion and rearrangement of the pyridine C-nucleoside intermediate to generate the 1,3-oxazine moiety along with the elimination of cyanide. Spectroscopic analysis and mutagenesis studies indicate that OzmD is a novel nonheme iron-dependent enzyme in which the catalytic iron center is likely coordinated by four histidine residues. These results provide the first example of 1,3-oxazine biosynthesis catalyzed by an unprecedented iron-dependent mono-oxygenase.


Assuntos
Ferro , Oxigenases , Vias Biossintéticas , Ferro/química , Nucleosídeos/metabolismo , Oxazinas , Oxigênio/química , Oxigenases/metabolismo , Piridinas , Uridina/análogos & derivados
8.
J Biomed Sci ; 29(1): 3, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35034634

RESUMO

BACKGROUND: Sp1, an important transcription factor, is involved in the progression of various cancers. Our previous studies have indicated that Sp1 levels are increased in the early stage of lung cancer progression but decrease during the late stage, leading to poor prognosis. In addition, estrogen has been shown to be involved in lung cancer progression. According to previous studies, Sp1 can interact with the estrogen receptor (ER) to coregulate gene expression. The role of interaction between Sp1 and ER in lung cancer progression is still unknown and will be clarified in this study. METHODS: The clinical relevance between Sp1 levels and survival rates in young women with lung cancer was studied by immunohistochemistry. We validated the sex dependence of lung cancer progression in EGFRL858R-induced lung cancer mice. Wound healing assays, chamber assays and sphere formation assays in A549 cells, Taxol-induced drug-resistant A549 (A549-T24) and estradiol (E2)-treated A549 (E2-A549) cells were performed to investigate the roles of Taxol and E2 in lung cancer progression. Luciferase reporter assays, immunoblot and q-PCR were performed to evaluate the interaction between Sp1, microRNAs and CD44. Tail vein-injected xenograft experiments were performed to study lung metastasis. Samples obtained from lung cancer patients were used to study the mRNA level of CD44 by q-PCR and the protein levels of Sp1 and CD44 by immunoblot and immunohistochemistry. RESULTS: In this study, we found that Sp1 expression was decreased in premenopausal women with late-stage lung cancer, resulting in a poor prognosis. Tumor formation was more substantial in female EGFRL858R mice than in male mice and ovariectomized female mice, indicating that E2 might be involved in the poor prognosis of lung cancer. We herein report that Sp1 negatively regulates metastasis and cancer stemness in E2-A549 and A549-T24 cells. Furthermore, E2 increases the mRNA and protein levels of RING finger protein 4 (RNF4), which is the E3-ligase of Sp1, and thereby decreases Sp1 levels by promoting Sp1 degradation. Sp1 can be recruited to the promoter of miR-3194-5p, and positively regulate its expression. Furthermore, there was a strong inverse correlation between Sp1 and CD44 levels in clinical lung cancer specimens. Sp1 inhibited CD44 expression by increasing the expression of miR-3194-5p, miR-218-5p, miR-193-5p, miR-182-5p and miR-135-5p, ultimately resulting in lung cancer malignancy. CONCLUSION: Premenopausal women with lung cancer and decreased Sp1 levels have a poor prognosis. E2 increases RNF4 expression to repress Sp1 levels in premenopausal women with lung cancer, thus decreasing the expression of several miRNAs that can target CD44 and ultimately leading to cancer malignancy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Feminino , Humanos , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/genética , Masculino , Camundongos , MicroRNAs/genética , Proteínas Nucleares , Fator de Transcrição Sp1/genética , Fatores de Transcrição
9.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012669

RESUMO

House dust mites (HDMs) are a common source of respiratory allergens responsible for allergic asthma and innate immune responses in human diseases. Since HDMs are critical factors in the triggering of allergen-induced airway mucosa from allergic asthma, we aimed to investigate the mechanisms of Toll-like receptors (TLR) in the signaling of the HDM extract that is involved in mucus hypersecretion and airway inflammation through the engagement of innate immunity. Previously, we reported that the somatic nuclear autoantigenic sperm protein (sNASP)/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis controls the initiation of TLRs to maintain the homeostasis of the innate immune response. The present study showed that the HDM extract stimulated the biogenesis of Mucin 5AC (MUC5AC) in bronchial epithelial cells via the TLR2/4 signaling pathway involving MyD88 and TRAF6. Specifically, sNASP binds to TRAF6 in unstimulated bronchial epithelial cells to prevent the activation of TRAF6-depenedent kinases. Upon on HDMs' stimulation, sNASP is phosphorylated, leading to the activation of TRAF6 downstream of the p38 MAPK and NF-κB signaling pathways. Further, NASP-knockdown enhanced TRAF6 signaling and MUC5AC biogenesis. In the HDM-induced mouse asthma model, we found that the HDM extract promoted airway hyperresponsiveness (AHR), MUC5AC, and allergen-specific IgE production as well as IL-5 and IL-13 for recruiting inflammatory cells. Treatment with the PEP-NASP peptide, a selective TRAF6-blocking peptide, ameliorated HDM-induced asthma in mice. In conclusion, this study indicated that the sNASP/TRAF6 axis plays a regulatory role in asthma by modulating mucus overproduction, and the PEP-NASP peptide might be a potential target for asthma treatment.


Assuntos
Asma , Autoantígenos , Mucina-5AC , Proteínas Nucleares , Fator 6 Associado a Receptor de TNF , Alérgenos , Animais , Asma/metabolismo , Autoantígenos/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Epitélio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mucina-5AC/genética , Mucina-5AC/metabolismo , Proteínas Nucleares/metabolismo , Pyroglyphidae , Mucosa Respiratória/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
10.
Angew Chem Int Ed Engl ; 60(31): 17148-17154, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34048627

RESUMO

Showdomycin is a C-nucleoside bearing an electrophilic maleimide base. Herein, the biosynthetic pathway of showdomycin is presented. The initial stages of the pathway involve non-ribosomal peptide synthetase (NRPS) mediated assembly of a 2-amino-1H-pyrrole-5-carboxylic acid intermediate. This intermediate is prone to air oxidation whereupon it undergoes oxidative decarboxylation to yield an imine of maleimide, which in turn yields the maleimide upon acidification. It is also shown that this pyrrole intermediate serves as the substrate for the C-glycosidase SdmA in the pathway. After coupling with ribose 5-phosphate, the resulting C-nucleoside undergoes a similar sequence of oxidation, decarboxylation and deamination to afford showdomcyin after exposure to air. These results suggest that showdomycin could be an artifact due to aerobic isolation; however, the autoxidation may also serve to convert an otherwise inert product of the biosynthetic pathway to an electrophilic C-nucleotide thereby endowing showdomycin with its observed bioactivities.


Assuntos
Glicosídeos/metabolismo , Peptídeo Sintases/metabolismo , Pirróis/metabolismo , Showdomicina/biossíntese , Glicosídeos/química , Conformação Molecular , Oxirredução , Peptídeo Sintases/química , Pirróis/química , Showdomicina/química
11.
Proc Natl Acad Sci U S A ; 114(39): 10408-10413, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28874588

RESUMO

The Diels-Alder reaction is one of the most common methods to chemically synthesize a six-membered carbocycle. While it has long been speculated that the cyclohexene moiety found in many secondary metabolites is also introduced via similar chemistry, the enzyme SpnF involved in the biosynthesis of the insecticide spinosyn A in Saccharopolyspora spinosa is the first enzyme for which catalysis of an intramolecular [Formula: see text]-cycloaddition has been experimentally verified as its only known function. Since its discovery, a number of additional standalone [Formula: see text]-cyclases have been reported as potential Diels-Alderases; however, whether their catalytic cycles involve a concerted or stepwise cyclization mechanism has not been addressed experimentally. Here, we report direct experimental interrogation of the reaction coordinate for the [Formula: see text]-carbocyclase SpnF via the measurement of [Formula: see text]-secondary deuterium kinetic isotope effects (KIEs) at all sites of [Formula: see text] rehybridization for both the nonenzymatic and enzyme-catalyzed cyclization of the SpnF substrate. The measured KIEs for the nonenzymatic reaction are consistent with previous computational results implicating an intermediary state between formation of the first and second carbon-carbon bonds. The KIEs measured for the enzymatic reaction suggest a similar mechanism of cyclization within the enzyme active site; however, there is evidence that conformational restriction of the substrate may play a role in catalysis.


Assuntos
Reação de Cicloadição , Macrolídeos/metabolismo , Metiltransferases/metabolismo , Domínio Catalítico/fisiologia , Saccharopolyspora/enzimologia , Saccharopolyspora/metabolismo
12.
J Am Chem Soc ; 141(15): 6127-6131, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30942582

RESUMO

Formycin A is a potent purine nucleoside antibiotic with a C-glycosidic linkage between the ribosyl moiety and the pyrazolopyrimidine base. Herein, a cosmid is identified from the Streptomyces kaniharaensis genome library that contains the for gene cluster responsible for the biosynthesis of formycin. Subsequent gene deletion experiments and in vitro characterization of the forBCH gene products established their catalytic functions in formycin biosynthesis. Results also demonstrated that PurH from de novo purine biosynthesis plays a key role in pyrazolopyrimidine formation during biosynthesis of formycin A. The participation of PurH in both pathways represents a good example of how primary and secondary metabolism are interlinked.


Assuntos
Formicinas/biossíntese , Purinas/biossíntese , Pirazóis/metabolismo , Pirimidinas/biossíntese , Streptomyces/química , Formicinas/química , Formicinas/metabolismo , Conformação Molecular , Família Multigênica , Purinas/química , Pirazóis/química , Pirimidinas/química , Estereoisomerismo , Streptomyces/genética , Streptomyces/metabolismo
13.
Chem Rev ; 117(8): 5367-5388, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441874

RESUMO

[4 + 2]-Cycloadditions are increasingly being recognized in the biosynthetic pathways of many structurally complex natural products. A relatively small collection of enzymes from these pathways have been demonstrated to increase rates of cyclization and impose stereochemical constraints on the reactions. While mechanistic investigation of these enzymes is just beginning, recent studies have provided new insights with implications for understanding their biosynthetic roles, mechanisms of catalysis, and evolutionary origin.


Assuntos
Alquil e Aril Transferases/química , Produtos Biológicos/química , Reação de Cicloadição , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 58(46): 16512-16516, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518483

RESUMO

C-Nucleosides are characterized by a C-C rather than a C-N linkage between the heterocyclic base and the ribofuranose ring. While the biosynthesis of pseudouridine-C-nucleosides has been studied, less is known about the pyrazole-C-nucleosides such as the formycins and pyrazofurin. Herein, genome screening of Streptomyces candidus NRRL 3601 led to the discovery of the pyrazofurin biosynthetic gene cluster pyf. In vitro characterization of gene product PyfQ demonstrated that it is able to catalyze formation of the C-glycoside carboxyhydroxypyrazole ribonucleotide (CHPR) from 4-hydroxy-1H-pyrazole-3,5-dicarboxylic acid and phosphoribosyl pyrophosphate (PRPP). Similarly, ForT, the PyfQ homologue in the formycin pathway, can catalyze the coupling of 4-amino-1H-pyrazole-3,5-dicarboxylic acid and PRPP to form carboxyaminopyrazole ribonucleotide. Finally, PyfP and PyfT are shown to catalyze amidation of CHPR to pyrazofurin 5'-phosphate thereby establishing the latter stages of both pyrazofurin and formycin biosynthesis.


Assuntos
Formicinas/biossíntese , Glicosídeos/química , Nucleosídeos/metabolismo , Ribonucleosídeos/biossíntese , Amidas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosídeos/síntese química , Família Multigênica , Nucleosídeos/química , Pirazóis/química , Ribose , Streptomyces/genética , Streptomyces/metabolismo
15.
Biochim Biophys Acta ; 1843(6): 1135-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24530506

RESUMO

p300 is a transcription cofactor for a number of nuclear proteins. Most studies of p300 have focused on the regulation of its function, which primarily includes its role as a transcription co-factor for a number of nuclear proteins. In this study, we found that p300 was highly phosphorylated and its level was decreased during mitosis and tumorigenesis. In vitro and in vivo experiments aimed showed that cyclin-dependent kinase 1 (CDK1) and ERK1/2 phosphorylated p300 on Ser1038 and Ser2039. Mutations of Ser1038 and Ser2039 increased p300 protein stability and levels. Inhibition of p300 degradation by blocking its phosphorylation decreased the proliferation and metastasis activity of lung cancer cells, indicating that p300 acts as a tumor suppressor in lung cancer tumorigenesis. Investigation of the molecular mechanism showed that blocking p300 phosphorylation disrupted chromatin condensation and the increased the acetylation of histone H3. Analysis of cell cycle progression in HA-p300-S2A-expressing cells by flow cytometry showed that the p300 mutants arrested the cells at S-phase or delayed the mitotic entry and exit. The expression of several important oncogenes, MMP-9, vimentin, ß-catenin, N-cadherin and c-myc, was negatively regulated by p300. In conclusion, during lung tumorigenesis, a phosphorylation-mediated decrease in p300 level enhanced oncogene expression during interphase and decreased histone H3 acetylation during mitosis, which promoted lung cancer progression.


Assuntos
Adenocarcinoma/patologia , Movimento Celular , Proliferação de Células , Proteína p300 Associada a E1A/metabolismo , Neoplasias Pulmonares/patologia , Proteólise , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Western Blotting , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Progressão da Doença , Proteína p300 Associada a E1A/genética , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Transgênicos , Mitose/fisiologia , Invasividade Neoplásica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Células Tumorais Cultivadas , Uteroglobina/genética , Uteroglobina/metabolismo , Cicatrização
16.
Biochim Biophys Acta ; 1843(12): 2843-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173817

RESUMO

Our previous study indicated that specificity protein-1 (Sp1) is accumulated during hypoxia in an internal ribosomal entry site (IRES)-dependent manner. Herein, we found that the Sp1 was induced strongly at the protein level, but not in the mRNA level, in lung tumor tissue, indicating that translational regulation might contribute to the Sp1 accumulation during tumorigenesis. A further study showed that the translation of Sp1 was dramatically induced through an IRES-dependent pathway. RNA immunoprecipitation analysis of proteins bound to the 5'-untranslated region (5'-UTR) of Sp1 identified interacting protein - nucleolin. Knockdown of nucleolin significantly inhibited IRES-mediated translation of Sp1, suggesting that nucleolin positively facilitates Sp1 IRES activation. Further analysis of the interaction between nucleolin and the 5'-UTR of Sp1 mRNA revealed that the GAR domain was important for IRES-mediated translation of Sp1. Moreover, gefitinib, and LY294002 and MK2206 compounds inhibited IRES-mediated Sp1 translation, implying that activation of the epithelial growth factor receptor (EGFR) pathway via Akt activation triggers the IRES pathway. In conclusion, EGFR activation-mediated nucleolin phosphorylated at Thr641 and Thr707 was recruited to the 5'-UTR of Sp1 as an IRES trans-acting factor to modulate Sp1 translation during lung cancer formation.

17.
Cell Death Differ ; 31(5): 574-591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491202

RESUMO

Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Ubiquitina Tiolesterase , Autofagia/efeitos dos fármacos , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética
18.
J Med Chem ; 67(4): 2963-2985, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38285511

RESUMO

Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Temozolomida/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Glioblastoma/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico
19.
Mol Oncol ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140768

RESUMO

Cancer represents a profound challenge to healthcare systems and individuals worldwide. The development of multiple drug resistance is a major problem in cancer therapy and can result in progression of the disease. In our previous studies, we developed small-molecule inhibitors targeting ubiquitin-specific peptidase 24 (USP24) to combat drug-resistant lung cancer. Recently, we found that the USP24 inhibitor NCI677397 induced ferroptosis, a type of programmed cell death, in drug-resistant cancer cells by increasing lipid reactive oxygen species (ROS) levels. In the present study, we investigated the molecular mechanisms and found that the targeting of USP24 by NCI677397 increased gene expression of most lipogenesis-related genes, such as acyl-CoA synthetase long-chain family member 4 (ACSL4), and activated autophagy. In addition, the activity of several antioxidant enzymes, such as glutathione peroxidase 4 (GPX4) and dihydrofolate reductase (DHFR), was inhibited by NCI677397 treatment via an increase in protein degradation, thereby inducing lipid ROS production and lipid peroxidation. In summary, we demonstrated that NCI677397 induced a marked increase in lipid ROS levels, subsequently causing lipid peroxidation and leading to the ferroptotic death of drug-resistant cancer cells. Our study provides new insights into the clinical use of USP24 inhibitors as ferroptosis inducers (FINs) to block drug resistance during chemotherapy.

20.
J Biol Chem ; 286(51): 43816-43829, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21998300

RESUMO

Most studies on heat shock protein 90 (Hsp90) have focused on the involvement of Hsp90 in the interphase, whereas the role of this protein in the nucleus during mitosis remains largely unclear. In this study, we found that the level of the acetylated form of Hsp90 decreased dramatically during mitosis, which indicates more chaperone activity during mitosis. We thus probed proteins that interacted with Hsp90 by liquid chromatography/mass spectrometry (LC/MS) and found that nucleolin was one of those interacting proteins during mitosis. The nucleolin level decreased upon geldanamycin treatment, and Hsp90 maintained the cyclin-dependent kinase 1 (CDK1) activity to phosphorylate nucleolin at Thr-641/707. Mutation of Thr-641/707 resulted in the destabilization of nucleolin in mitosis. We globally screened the level of mitotic mRNAs and found that 229 mRNAs decreased during mitosis in the presence of geldanamycin. Furthermore, a bioinformatics tool and an RNA immunoprecipitation assay found that 16 mRNAs, including cadherin and Bcl-xl, were stabilized through the recruitment of nucleolin to the 3'-untranslated regions (3'-UTRs) of those genes. Overall, strong correlations exist between the up-regulation of Hsp90, nucleolin, and the mRNAs related to tumorigenesis of the lung. Our findings thus indicate that nucleolin stabilized by Hsp90 contributes to the lung tumorigenesis by increasing the level of many tumor-related mRNAs during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Antibióticos Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Núcleo Celular/metabolismo , Cromatografia Líquida/métodos , Células HeLa , Humanos , Imunoprecipitação , Lactamas Macrocíclicas/farmacologia , Espectrometria de Massas/métodos , Mitose , Fosfoproteínas/química , Conformação Proteica , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Espectrometria de Massas em Tandem/métodos , Nucleolina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa