Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2307320120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871220

RESUMO

The selective photocatalytic conversion of CO2 and H2O to high value-added C2H4 remains a great challenge, mainly attributed to the difficulties in C-C coupling of reaction intermediates and desorption of C2H4* intermediates from the catalyst surface. These two key issues can be simultaneously overcome by alloying Ag with Cu which gives enhanced activity to both reactions. Herein, we developed a facile stepwise photodeposition strategy to load Cu-Ag alloy sub-nanoclusters (ASNCs) on TiO2 for CO2 photoreduction to produce C2H4. The optimized catalyst exhibits a record-high C2H4 formation rate (1110.6 ± 82.5 µmol g-1 h-1) with selectivity of 49.1 ± 1.9%, which is an order-of-magnitude enhancement relative to current work for C2H4 photosynthesis. The in situ FT-IR spectra combined with DFT calculations reveal the synergistic effect of Cu and Ag in Cu-Ag ASNCs, which enable an excellent C-C coupling capability like Ag and promoted C2H4* desorption property like Cu, thus advancing the selective and efficient production of C2H4. The present work provides a deeper understanding on cluster chemistry and C-C coupling mechanism for CO2 reduction on ASNCs and develops a feasible strategy for photoreduction CO2 to C2 fuels or industrial feedstocks.

2.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511325

RESUMO

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glicólise , Membro Posterior , Isquemia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Transdução de Sinais , Animais , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Isquemia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicólise/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Membro Posterior/irrigação sanguínea , Masculino , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Indutores da Angiogênese/farmacologia , Fragmentos de Peptídeos/farmacologia , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Modelos Animais de Doenças , Incretinas/farmacologia , Angiogênese
3.
Small ; : e2402882, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773890

RESUMO

High carrier separation efficiency and rapid surface catalytic reaction are crucial for enhancing catalytic CO2 photoreduction reaction. Herein, integrated surface decoration strategy with oxygen vacancies (Ov) and anchoring CuxO (1 < x < 2) nanodots below 10 nm is realized on Bi2MoO6 for promoting CO2 photoreduction performance. The charge interaction between Ov and anchored CuxO enables the formation of enhanced internal electric field, which provides a strong driving force for accelerating the separation of photocharge carriers on the surface of Bi2MoO6 (ηsurf ≈71%). They can also cooperatively reduce the surface work function of Bi2MoO6, facilitating the migration of carrier to the surface. Meanwhile, surface-integrated Ov and CuxO nanodots allowing dual catalytic sites strengthens the adsorption and activation CO2 into *CO2 over Bi2MoO6, considerably boosting the progression of CO2 conversion process. In the absence of co-catalyst or sacrificial agent, Bi2MoO6 with Ov and CuxO nanodots achieves a photocatalytic CO generation rate of 12.75 µmol g-1 h-1, a remarkable increase of over ≈15 times that of the original counterpart. This work provides a new idea for governing charge movement behaviors and catalytic reaction thermodynamics on the basis of synergistic improvement of electric field and active sites by coupling of the internal defects and external species.

4.
Angew Chem Int Ed Engl ; 63(15): e202400985, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38353140

RESUMO

Introducing continuous mesochannels into covalent organic frameworks (COFs) to increase the accessibility of their inner active sites has remained a major challenge. Here, we report the synthesis of COFs with an ordered bicontinuous mesostructure, via a block copolymer self-assembly-guided nanocasting strategy. Three different mesostructured COFs are synthesized, including two covalent triazine frameworks and one vinylene-linked COF. The new materials are endowed with a hierarchical meso/microporous architecture, in which the mesochannels exhibit an ordered shifted double diamond (SDD) topology. The hierarchically porous structure can enable efficient hole-electron separation and smooth mass transport to the deep internal of the COFs and consequently high accessibility of their active catalytic sites. Benefiting from this hierarchical structure, these COFs exhibit excellent performance in visible-light-driven catalytic NO removal with a high conversion percentage of up to 51.4 %, placing them one of the top reported NO-elimination photocatalysts. This study represents the first case of introducing a bicontinuous structure into COFs, which opens a new avenue for the synthesis of hierarchically porous COFs and for increasing the utilization degree of their internal active sites.

5.
J Am Chem Soc ; 145(11): 6079-6086, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36855832

RESUMO

Amorphous noble metals with high surface areas have attracted significant interest as heterogeneous catalysts due to the numerous dangling bonds and abundant unsaturated surface atoms created by the amorphous phase. However, synthesizing amorphous noble metals with high surface areas remains a significant challenge due to strong isotropic metallic bonds. This paper describes the first example of a mesoporous amorphous noble metal alloy [iridium-tellurium (IrTe)] obtained using a micelle-directed synthesis method. The resulting mesoporous amorphous IrTe electrocatalyst exhibits excellent performance in the electrochemical N2 reduction reaction. The ammonia yield rate is 34.6 µg mg-1 h-1 with a Faradaic efficiency of 11.2% at -0.15 V versus reversible hydrogen electrode in 0.1 M HCl solution, outperforming comparable crystalline and Ir metal counterparts. The interconnected porous scaffold and amorphous nature of the alloy create a complementary effect that simultaneously enhances N2 absorption and suppresses the hydrogen evolution reaction. According to theoretical simulations, incorporating Te in the IrTe alloy effectively strengthens the adsorption of N2 and lowers the Gibbs free energy for the rate-limiting step of the electrocatalytic N2 reduction reaction. Mesoporous chemistry enables a new route to achieve high-performance amorphous metalloid alloys with properties that facilitate the selective electrocatalytic reduction of N2.

6.
Small ; 19(5): e2203559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417582

RESUMO

Photocatalytic CO2 reduction is severely limited by the rapid recombination of photo-generated charges and insufficient reactive sites. Creating electric field and defects are effective strategies to inhibit charge recombination and enrich catalytic sites, respectively. Herein, a coupled strategy of ferroelectric poling and cationic vacancy is developed to achieve high-performance CO2 photoreduction on ferroelectric Bi2 MoO6 , and their interesting synergy-compensation relationship is first disclosed. Corona poling increases the remnant polarization of Bi2 MoO6 to enhance the intrinsic electric field for promoting charge separation, while it decreases the CO2 adsorption. The introduced Mo vacancy (VMo ) facilitates the adsorption and activation of CO2 , and surface charge separation by creating local electric field. Unfortunately, VMo largely reduces the remnant polarization intensity. Coupling poling and VMo not only integrate their advantages, resulting in an approximately sevenfold increased surface charge transfer efficiency, but also compensate for their shortcomings, for example, VMo largely alleviates the negative effects of ferroelectric poling on CO2 adsorption. In the absence of co-catalyst or sacrificial agent, the poled Bi2 MoO6 with VMo exhibits a superior CO2 -to-CO evolution rate of 19.75 µmol g-1 h-1 , ≈8.4 times higher than the Bi2 MoO6 nanosheets. This work provides new ideas for exploring the role of polarization and defects in photocatalysis.

7.
Lipids Health Dis ; 22(1): 32, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871015

RESUMO

BACKGROUND AND AIMS: The effect of body fat deposition on the kidney has received increasing attention. The Chinese visceral adiposity index (CVAI) is an important indicator of recent research. The purpose of this study was to explore the predictive value of CVAI and other organ obesity indicators in predicting CKD in Chinese residents. METHODS: A retrospective cross-sectional study of 5355 subjects was performed. First, the study utilized locally estimated scatterplot smoothing to describe the dose-response relationship between the estimated glomerular filtration rate (eGFR) and CVAI. The L1-penalized least absolute shrinkage and selection operator (LASSO) regression algorithm was used for covariation screening, and the correlation between CVAI and eGFR was quantified using multiple logistic regression. At the same time, the diagnostic efficiency of CVAI and other obesity indicators was evaluated by ROC curve analysis. RESULTS: CVAI and eGFR were negatively correlated. Using group one as the control, an odds ratio (OR) was calculated to quantify CVAI quartiles (ORs of Q2, Q3, and Q4 were 2.21, 2.99, and 4.42, respectively; P for trend < 0.001). CVAI had the maximum area under the ROC curve compared with other obesity indicators, especially in the female population (AUC: 0.74, 95% CI: 0.71-0.76). CONCLUSIONS: CVAI is closely linked to renal function decline and has certain reference value for the screening of CKD patients, particularly in women.


Assuntos
Adiposidade , Insuficiência Renal Crônica , Feminino , Humanos , Taxa de Filtração Glomerular , Estudos Transversais , População do Leste Asiático , Estudos Retrospectivos , Obesidade , Rim/fisiologia , Exame Físico
8.
Angew Chem Int Ed Engl ; 62(50): e202315456, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933417

RESUMO

Herein, the exposure of highly-active nitrogen cation sites has been accomplished by photo-driven quasi-topological transformation of a 1,10-phenanthroline-5,6-dione-based covalent organic framework (COF), which contributes to hydrogen peroxide (H2 O2 ) synthesis during the 2-electron O2 photoreduction. The exposed nitrogen cation sites with photo-enhanced Lewis acidity not only act as the electron-transfer motor to adjust the inherent charge distribution, powering continuous and stable charge separation, and broadening visible-light adsorption, but also providing a large number of active sites for O2 adsorption. The optimal catalyst shows a high H2 O2 production rate of 11965 µmol g-1 h-1 under visible light irradiation and a remarkable apparent quantum yield of 12.9 % at 400 nm, better than most of the previously reported COF photocatalysts. This work provides new insights for designing photo-switchable nitrogen cation sites as catalytic centers toward efficient solar to chemical energy conversion.

9.
Angew Chem Int Ed Engl ; 62(4): e202215057, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36446740

RESUMO

Direct photocatalytic oxidation of methane to liquid oxygenated products is a sustainable strategy for methane valorization at room temperature. However, in this reaction, noble metals are generally needed to function as cocatalysts for obtaining adequate activity and selectivity. Here, we report atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite (Ni-NC/TiO2 ) as a highly active and selective catalyst for photooxidation of CH4 to C1 oxygenates with O2 as the only oxidant. Ni-NC/TiO2 exhibits a yield of C1 oxygenates of 198 µmol for 4 h with a selectivity of 93 %, exceeding that of most reported high-performance photocatalysts. Experimental and theoretical investigations suggest that the single-atom Ni-NC sites not only enhance the transfer of photogenerated electrons from TiO2 to isolated Ni atoms but also dominantly facilitate the activation of O2 to form the key intermediate ⋅OOH radicals, which synergistically lead to a substantial enhancement in both activity and selectivity.

10.
Nano Lett ; 21(8): 3495-3502, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33830772

RESUMO

Water and ion transport in nanochannels is an intriguing topic that has been extensively investigated in several energy- and environment-related research fields. Recently developed two-dimensional (2D) materials are ideal building blocks for constructing confined nanochannels by self-stacking. Among these, graphene oxide (GO) is the most frequently employed as the starting material because of its excellent solution processability. Since solvation of the GO nanostructure usually impairs the function of nanochannels, in this study, chemically converted graphene was prepared using a one-step method, to simultaneously acquire the desired stability and functionality of the nanochannels. The confined channels with high charge densities are capable of excluding ∼90% NaCl solutes from water in a pressure-driven filtration process. This surpasses the performance of most GO desalination membranes reported in the literature. Thus, this study provides useful information for the feasible development of ion-exclusion nanochannel membranes based on the proposed nanochannel-confined charge repulsion mechanism.


Assuntos
Grafite , Nanoestruturas , Membranas Artificiais , Soluções , Água
11.
J Am Chem Soc ; 142(45): 19259-19267, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119292

RESUMO

Developing unique single atoms as active sites is vitally important to boosting the efficiency of photocatalytic CO2 reduction, but directly atomizing metal particles and simultaneously adjusting the configuration of individual atoms remain challenging. Herein, we demonstrate a facile strategy at a relatively low temperature (500 °C) to access the in situ metal atomization and coordination adjustment via the thermo-driven gaseous acid. Using this strategy, the pyrolytic gaseous acid (HCl) from NH4Cl could downsize the large metal particles into corresponding ions, which subsequently anchored onto the surface defects of a nitrogen-rich carbon (NC) matrix. Additionally, the low-temperature treatment-induced C═O motifs within the interlayer of NC could bond with the discrete Fe sites in a perpendicular direction and finally create stabilized Fe-N4O species with high valence status (Fe3+) on the shallow surface of the NC matrix. It was found that the Fe-N4O species can achieve a highly efficient CO2 conversion when accepting energetic electrons from both homogeneous and heterogeneous photocatalysts. The optimized sample achieves a maximum turnover number (TON) of 1494 within 1 h in CO generation with a high selectivity of 86.7% as well as excellent stability. Experimental and theoretical results unravel that high valence Fe sites in Fe-N4O species can promote the adsorption of CO2 and lower the formation barrier of key intermediate COOH* compared with the traditional Fe-N4 moiety with lower chemical valence. Our discovery provides new points of view in the construction of more efficient single-atom cocatalysts by considering the optimization of the atomic configuration for high-performance CO2 photoreduction.

12.
J Dairy Sci ; 103(1): 141-149, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31629528

RESUMO

The objective of this study was to develop a novel immobilized system using kefir lactic acid bacteria and sugar cane pieces for the production of fermented milk. Lactobacillus kefiranofaciens HL1, Lactobacillus kefiri HL2, Leuconostoc mesenteroides HL3, and Lactococcus lactis HL4 were isolated from Taiwanese kefir grains and immobilized on pieces of sugar cane using adsorption. Scanning electron micrographs of the cell-immobilized sugar cane pieces (CISCP) showed that the microorganisms were embedded within the porous structures of the sugar cane pieces. During 28 cycles of repeated batch fermentation, viable cells on both sugar cane pieces and fermented products were maintained at 10 log cfu/g (cfu/mL). Random amplified polymorphic DNA PCR analysis revealed that Leu. mesenteroides HL3 (29-43%) and Lc. lactis HL4 (31-49%) were predominant on the CISCP, and the fermented samples had 79% Lc. lactis HL4. When tracking fermentation parameters, the data on the microbial, chemical, and physical properties of the fermented milk suggested that the CISCP had stable fermentative ability over the course of successive fermentations. We found an enhancement of the acid-producing ability of CISCP as the number of fermentations increased, with a significant growth in titratable acidity from 0.65 to 0.81% by the end.


Assuntos
Produtos Fermentados do Leite/microbiologia , Kefir/microbiologia , Lactobacillales/metabolismo , Lactobacillus/isolamento & purificação , Leite/metabolismo , Saccharum , Animais , Células Imobilizadas , Fermentação , Lactobacillales/isolamento & purificação , Lactococcus lactis/isolamento & purificação , Lactococcus lactis/metabolismo , Leuconostoc/isolamento & purificação , Leite/química
13.
J Am Chem Soc ; 141(51): 20507-20515, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31834789

RESUMO

Direct conversion of methane into methanol and other liquid oxygenates still confronts considerable challenges in activating the first C-H bond of methane and inhibiting overoxidation. Here, we report that ZnO loaded with appropriate cocatalysts (Pt, Pd, Au, or Ag) enables direct oxidation of methane to methanol and formaldehyde in water using only molecular oxygen as the oxidant under mild light irradiation at room temperature. Up to 250 micromoles of liquid oxygenates with ∼95% selectivity is achieved for 2 h over 10 mg of ZnO loaded with 0.1 wt % of Au. Experiments with isotopically labeled oxygen and water reveal that molecular O2, rather than water, is the source of oxygen for direct CH4 oxidation. We find that ZnO and cocatalyst could concertedly activate CH4 and O2 into methyl radical and mildly oxidative intermediate (hydroperoxyl radical) in water, which are two key precursor intermediates for generating oxygenated liquid products in direct CH4 oxidation. Our study underlines two equally significant aspects for realizing direct and selective photooxidation of CH4 to liquid oxygenates, i.e., efficient C-H bond activation of CH4 and controllable activation of O2.

14.
Langmuir ; 35(28): 9152-9160, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31260317

RESUMO

To investigate the effect of the surface properties and the coating layer properties on surface modification via electrostatic adsorption, the electrostatic adsorption behavior of zwitterionic copolymers on negatively charged surfaces was studied. A series of positively charged zwitterionic copolymers and a series of negatively charged surfaces, including porous substrates and dense films, were fabricated. The electrostatic adsorption behavior of the zwitterionic copolymers on the negatively charged porous substrates was confirmed using the contact angles and fluorescently labeled protein adsorption experiments. The adsorption behavior of the zwitterionic copolymers on the negatively charged dense films was confirmed using quartz crystal microbalance determination and a fluorescently labeled protein adsorption experiment. The results indicated that a lower charge density on the zwitterionic copolymer brings about a higher adsorption mass on the charged surface, whereas an extremely low charge density on the coating layer results in a lower adsorption mass on the charged surface, due to weak interaction. A high density of the film surface charge is beneficial for surface adsorption, whereas an extremely high density of the film surface charge leads to low surface adsorption due to steric hindrance of the negatively charged sites. This work provides an insight into the best strategy for surface modification via electrostatic adsorption.

15.
J Dairy Sci ; 102(3): 1901-1909, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639021

RESUMO

The aim of this study was to evaluate the antiaging effect of a probiotic mixture using an in vivo mouse model in which aging was induced with d-galactose. Results of the Morris water maze test indicated that long-term administration of the probiotic mixture improved memory and learning abilities and ameliorated the apoptosis pattern in the hippocampus of aging mice treated with d-galactose. An antioxidation experiment indicated that administration of the probiotic mixture could restore activities of the antioxidant enzymes superoxide dismutase and catalase and inhibit the production of malondialdehyde. The antioxidant-related proteins nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were upregulated in liver after treatment of d-galactose-treated aging mice with probiotics. Finally, the probiotic treatment did affect the production of short-chain fatty acids in d-galactose-treated aging mice. Our results highlighted a possible antioxidative effect triggered by short-chain fatty acids that contributed to improving the memory and learning abilities following treatment with the probiotic mixture and suggested that probiotics could serve as a therapy to modulate physiological function.


Assuntos
Envelhecimento/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Probióticos/administração & dosagem , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/análise , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Galactose/farmacologia , Heme Oxigenase-1/metabolismo , Hipocampo/citologia , Fígado/química , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
J Sci Food Agric ; 99(8): 3843-3851, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30680724

RESUMO

BACKGROUND: Lipid peroxidation entails major quality degradation in omega-3 (ω-3) fatty-acid-fortified surimi-like meat products upon storage. Currently, the use of label-friendly alternatives to synthetic antioxidants is encouraged in the industry. Hence, we aimed to examine the applicability of the hurdle-technology concept, using an 80% (v/v) ethanol solution to obtain rosemary extracts (REs) containing substantial amounts of polyphenol, and dry ice (DI) which can create a cryogenic environment, on the physicochemical stabilities of ω-3 fatty-acid (FA)-fortified meat products after manufacturing and storage periods. The polyphenolic profiles of the REs were also investigated. RESULTS: Carnosol and rosmarinic acid are major phenolic components in REs. Furthermore, DI addition during the chopping procedure increased (P < 0.05) whiteness values and hardness of products, while total ω-3 and ω-6 FAs were relatively well preserved (P < 0.05) in products with flaxseed oil premixed with RE. During 14-day storage at 4 °C, combined treatment with RE and DI decreased (P < 0.05) thiobarbituric acid reactive substance (TBARS) levels and the centrifugation loss of products. Single or combined treatment with RE and/or DI decreased (P < 0.05) TBARS levels in products after 60 days of storage at -20 °C. CONCLUSION: Due to the antioxidant-polyphenol profile of REs and a possible oxygen exclusion of DI treatment under atmospheric pressure during food manufacturing, application of the hurdle-technology concept, using treatment with both RE and DI, can reduce lipid peroxidation and maintain a greater water-holding capacity of ω-3 FA-fortified meat products upon storage. © 2019 Society of Chemical Industry.


Assuntos
Ácidos Graxos Ômega-3/química , Conservação de Alimentos/métodos , Conservantes de Alimentos/análise , Produtos da Carne/análise , Extratos Vegetais/análise , Rosmarinus/química , Animais , Antioxidantes/análise , Galinhas , Gelo-Seco , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Alimentos Fortificados/análise , Folhas de Planta/química , Polifenóis/análise , Substâncias Reativas com Ácido Tiobarbitúrico/análise
17.
J Sci Food Agric ; 99(5): 2300-2310, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30324620

RESUMO

BACKGROUND: Reactive oxygen species (ROS) overproduction is highly related to some human chronic diseases. There are approximately 400 metric tons of chalazae produced yearly after the processing of the liquid-egg production, which are disposed of as waste. The objectives of this study were to look for the optimal production condition of antioxidant crude chalaza hydrolysates and evaluate the in vivo antioxidant capacity via a chronic alcohol consumption mouse model. RESULTS: Antioxidant crude chalaza hydrolysates (CCH-As) could be produced by protease A at 1:100 ratio (w/w) and 0.5 h hydrolytic period. After our analyses, CCH-As were rich in leucine, arginine, phenylalanine, valine, lysine and antioxidant dipeptides (anserine and carnosine), and the major molecular masses were lower than 15 kDa. Regarding protective effects of CCH-As against oxidative damage in alcoholic-liquid-diet-fed mice, alcohol-fed mice had lower (P < 0.05) liver antioxidant capacities, and higher (P < 0.05) liver lipid contents, serum lipid/liver damage indices and IL-1ß/IL-6 values. CCH-A supplementation reversed (P < 0.05) liver antioxidant capacities and reduced (P < 0.05) serum/liver lipids in alcohol-fed mice, which may result from increased (P < 0.05) fecal lipid output, upregulated (P < 0.05) fatty acid ß-oxidation and downregulated (P < 0.05) lipogenesis in the liver. CONCLUSION: Taken together, this CCH-A should benefit the liquid-egg industry, while also offering consumers a choice of healthy ingredients from animal sources. © 2018 Society of Chemical Industry.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Antioxidantes/administração & dosagem , Gema de Ovo/química , Fígado Gorduroso/prevenção & controle , Resíduos/análise , Animais , Antioxidantes/química , Galinhas , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Humanos , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hidrolisados de Proteína/administração & dosagem , Hidrolisados de Proteína/química , Espécies Reativas de Oxigênio/metabolismo
18.
Small ; 14(19): e1800104, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29633500

RESUMO

Photosynthetic biocatalysts are emerging as a new class of materials, with their sophisticated and intricate structure, which promise improved remarkable quantum efficiency compared to conventional inorganic materials in artificial photosynthesis. To break the limitation of efficiency, the construction of bioconjugated photo-electrochemical conversion devices has garnered substantial interest and stood at the frontier of the multidisciplinary research between biology and chemistry. Herein, a biohybrid photoanode of a photosynthetic membrane protein (Photosystem II (PS II)), extracted from fresh spinach entrapped on mesoporous WO3 film, is fabricated on fluorine-doped tin oxide. The PS II membrane proteins are observed to communicate with the WO3 electrode in the absence of any soluble redox mediators and sacrificial reagents under the visible light of the solar spectrum, even to 700 nm. The biohybrid electrode undergoes electron transfer and generates a significantly enhanced photocurrent compared to previously reported PS II-based photoanodes with carbon nanostructures or other semiconductor substrates for solar water oxidation. The maximum incident photon-to-current conversion efficiency reaches 15.24% at 400 nm in the visible light region. This work provides some insights and possibilities into the efficient assembly of a future solar energy conversion system based on visible-light-responsive semiconductors and photosynthetic proteins.


Assuntos
Luz , Proteínas de Membrana/metabolismo , Óxidos/química , Fotossíntese , Tungstênio/química , Água/química , Eletricidade , Eletrodos , Flúor/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Porosidade , Spinacia oleracea , Compostos de Estanho/química
19.
Environ Monit Assess ; 190(2): 66, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29308537

RESUMO

The occurrence of eight perfluorinated compounds (PFCs) in the surface sediments from 10 sampling sites spread across the Danjiangkou Reservoir was investigated by isotope dilution ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) after solid-phase extraction (SPE). All the sediments from the 10 sites contained detectable levels of PFCs. The total concentration of the target PFCs in each sediment sample (C∑PFCs) ranged from 0.270 to 0.395 ng g-1 of dry weight, and the mean value of C∑PFCs was 0.324 ± 0.045 ng g-1 of dry weight for the whole reservoir. For each perfluorinated compound in one sediment, perfluorooctane sulfonate (PFOS) or perfluoro-n-butanoic acid (PFBA) consistently had a higher concentration than the other six PFCs, while perfluoro-n-octanoic acid (PFOA) was always undetectable. In terms of spatial distribution, the total and individual concentrations of PFCs in sediment from downstream sites of the Danjiangkou Reservoir were higher than those from upstream sites. Factor analysis revealed that PFCs in the sediment samples originated from electroplating and anti-fog agents in industry, food/pharmaceutical packaging and the water/oil repellent paper coating, and the deposition process. The quotient method was utilized to assess the ecological risk of PFCs in the sediments of the Danjiangkou Reservoir, which showed that the concentrations of PFCs were not considered a risk. In this study, detailed information on the concentration level and distribution of PFCs in the sediments of the Danjiangkou Reservoir, which is the source of water for the Middle Route Project of the South-to-North Water Transfer Scheme in China, was reported and analyzed for the first time. These results can provide valuable information for water resource management and pollution control in the Danjiangkou Reservoir.


Assuntos
Monitoramento Ambiental , Fluorocarbonos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Caprilatos , China , Cromatografia Líquida , Extração em Fase Sólida , Espectrometria de Massas em Tandem
20.
J Sci Food Agric ; 96(5): 1609-17, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25988217

RESUMO

BACKGROUND: The meat of spent hens is hard to use owing to its small amount and poor quality. A washing process to remove sarcoplasmic proteins and other impurities can prolong the shelf life of surimi-like products. Owing to the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFAs), functional foods fortified with ω-3 PUFAs are increasingly being marketed. Hence, in this study, ω-3 FA-fortified chicken surimi was manufactured, and how to ameliorate its lipid peroxidation during frozen storage was investigated. RESULTS: A 0.10% (w/v) solution of sodium chloride (NaCl) instead of distilled water in the third washing step decreased (P < 0.05) myofibrillar protein loss and moisture content of spent hen breast protein recoveries. Oil droplets in fish, flaxseed or soybean oil-added chicken surimi were well distributed. Moreover, flaxseed oil addition increased (P < 0.05) total ω-3 FAs and ω-3/ω-6 FA ratio, while only fish oil provided long-chain PUFAs. Oil addition decreased (P < 0.05) hardness and gumminess of chicken surimi, while flaxseed oil resulted in more (P < 0.05) yellow surimi than fish and soybean oil. Fish oil-added samples showed higher (P < 0.05) lipid oxidation than flaxseed or soybean oil-added samples under -15 to -10 °C storage, but α-tocopherol addition ameliorated it. CONCLUSION: A novel semi-manufactured chicken surimi product with nutritional benefits could be developed by fortification with fish or flaxseed oil.


Assuntos
Ácidos Graxos Ômega-3/química , Produtos da Carne/análise , Animais , Galinhas , Feminino , Armazenamento de Alimentos , Alimentos Fortificados , Congelamento , Lipídeos/química , Microscopia Eletrônica de Varredura , Proteínas/química , Cloreto de Sódio , alfa-Tocoferol/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa