RESUMO
An increasing number of protein interaction domains and their targets are being found to be intrinsically disordered proteins (IDPs). The corresponding target recognition mechanisms are mostly elusive because of challenges in performing detailed structural analysis of highly dynamic IDP-IDP complexes. Here, we show that by combining recently developed computational approaches with experiments, the structure of the complex between the intrinsically disordered C-terminal domain (CTD) of protein 4.1G and its target IDP region in NuMA can be dissected at high resolution. First, we carry out systematic mutational scanning using dihydrofolate reductase-based protein complementarity analysis to identify essential interaction regions and key residues. The results are found to be highly consistent with an α/ß-type complex structure predicted by AlphaFold2 (AF2). We then design mutants based on the predicted structure using a deep learning protein sequence design method. The solved crystal structure of one mutant presents the same core structure as predicted by AF2. Further computational prediction and experimental assessment indicate that the well-defined core structure is conserved across complexes of 4.1G CTD with other potential targets. Thus, we reveal that an intrinsically disordered protein interaction domain uses an α/ß-type structure module formed through synergistic folding to recognize broad IDP targets. Moreover, we show that computational prediction and experiment can be jointly applied to segregate true IDP regions from the core structural domains of IDP-IDP complexes and to uncover the structure-dependent mechanisms of some otherwise elusive IDP-IDP interactions.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Furilfuramida , Sequência de Aminoácidos , Mutação , Domínios e Motivos de Interação entre ProteínasRESUMO
Drosophila Pins (and its mammalian homologue LGN) play a crucial role in the process of asymmetric cell division (ACD). Extensive research has established that Pins/LGN functions as a conformational switch primarily through intramolecular interactions involving the N-terminal TPR repeats and the C-terminal GoLoco (GL) motifs. The GL motifs served as binding sites for the α subunit of the trimeric G protein (Gα), which facilitates the release of the autoinhibited conformation of Pins/LGN. While LGN has been observed to specifically bind to Gαi·GDP, Pins has been found to associate with both Drosophila Gαi (dGαi) and Gαo (dGαo) isoforms. Moreover, dGαo was reported to be able to bind Pins in both the GDP- and GTP-bound forms. However, the precise mechanism underlying the influence of dGαo on the conformational states of Pins remains unclear, despite extensive investigations into the Gαi·GDP-mediated regulatory conformational changes in LGN/Pins. In this study, we conducted a comprehensive characterization of the interactions between Pins-GL motifs and dGαo in both GDP- and GTP-loaded forms. Our findings reveal that Pins-GL specifically binds to GDP-loaded dGαo. Through biochemical characterization, we determined that the intramolecular interactions of Pins primarily involve the entire TPR domain and the GL23 motifs. Additionally, we observed that Pins can simultaneously bind three molecules of dGαo·GDP, leading to a partial opening of the autoinhibited conformation. Furthermore, our study presents evidence contrasting with previous observations indicating the absence of binding between dGαi and Pins-GLs, thus implying the pivotal role of dGαo as the principal participant in the ACD pathway associated with Pins.
RESUMO
Ykt6 is one of the most conserved SNARE (N-ethylmaleimide-sensitive factor attachment protein receptor) proteins involved in multiple intracellular membrane trafficking processes. The membrane-anchoring function of Ykt6 has been elucidated to result from its conformational transition from a closed state to an open state. Two ways of regulating the conformational transition were proposed: the C-terminal lipidation and the phosphorylation at the SNARE core. Despite many aspects of common properties, Ykt6 displays differential cellular localizations and functional behaviors in different species, such as yeast, mammals, and worms. The structure-function relationship underlying these differences remains elusive. Here, we combined biochemical characterization, single-molecule FRET measurement, and molecular dynamics simulation to compare the conformational dynamics of yeast and rat Ykt6. Compared to rat Ykt6 (rYkt6), yeast Ykt6 (yYkt6) has more open conformations and could not bind dodecylphosphocholine that inhibits rYkt6 in the closed state. A point mutation T46L/Q57A was shown to be able to convert yYkt6 to a more closed and dodecylphosphocholine-bound state, where Leu46 contributes key hydrophobic interactions for the closed state. We also demonstrated that the phospho-mutation S174D could shift the conformation of rYkt6 to a more open state, but the corresponding mutation S176D in yYkt6 leads to a slightly more closed conformation. These observations shed light on the regulatory mechanism underlying the variations of Ykt6 functions across species.
Assuntos
Proteínas SNARE , Saccharomyces cerevisiae , Animais , Ratos , Mamíferos/metabolismo , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismoRESUMO
Intrinsically disordered proteins (IDPs) lack a well-defined tertiary structure but are essential players in various biological processes. Their ability to undergo a disorder-to-order transition upon binding to their partners, known as the folding-upon-binding process, is crucial for their function. One classical example is the intrinsically disordered transactivation domain (TAD) of the tumor suppressor protein p53, which quickly forms a structured α-helix after binding to its partner MDM2, with clinical significance for cancer treatment. However, the contribution of nonnative interactions between the IDP and its partner to the rapid binding kinetics, as well as their interplay with native interactions, is not well understood at the atomic level. Here, we used molecular dynamics simulation and Markov state model (MSM) analysis to study the folding-upon-binding mechanism between p53-TAD and MDM2. Our results suggest that the system progresses from the nascent encounter complex to the well-structured encounter complex and finally reaches the native complex, following an induced-fit mechanism. We found that nonnative hydrophobic and hydrogen bond interactions, combined with native interactions, effectively stabilize the nascent and well-structured encounter complexes. Among the nonnative interactions, Leu25p53-Leu54MDM2 and Leu25p53-Phe55MDM2 are particularly noteworthy, as their interaction strength is close to the optimum. Evidently, strengthening or weakening these interactions could both adversely affect the binding kinetics. Overall, our findings suggest that nonnative interactions are evolutionarily optimized to accelerate the binding kinetics of IDPs in conjunction with native interactions.
Assuntos
Proteínas Intrinsicamente Desordenadas , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Cinética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , HumanosRESUMO
Manure replacing synthetic fertilizer is a viable practice to ensure crop yield and increase soil organic carbon (SOC), but its impact on greenhouse gas (GHG) emissions is inconsistent, thus remains its effect on CF unclear. In this study, a 7-year field experiment was conducted to assess the impact of replacing synthetic fertilizer with manure on crop productivity, SOC sequestration, GHG emissions and crop CF under winter wheat-summer maize cropping system. Five treatments were involved: synthetic nitrogen, phosphorus, and potassium fertilizer (NPK) and 25%, 50%, 75%, and 100% of manure replacing synthetic N (25%M, 50%M, 75%M, and 100%M). Compared with NPK treatment, 25%M and 50%M treatments maintained annual yield (winter wheat plus summer maize) and sustainable yield index (SYI), but 75%M and 100%M treatments significantly decreased annual yield, and 100%M treatment also significantly reduced annual SYI. The SOC content exhibited a significant increasing trend over years in all treatments. After 7 years, SOC storage in manure treatments increased by 3.06-11.82 Mg ha-1 relative to NPK treatment. Manure treatments reduced annual GHG emissions by 14%-60% over NPK treatment. The CF of the cropping system ranged from 0.16 to 0.39 kg CO2 eq kg-1 of grain without considering SOC sequestration, in which the CF of manure treatments lowered by 18%-58% relative to NPK treatment. When SOC sequestration was involved in, the CF varied from -0.39 to 0.37 kg CO2 eq kg-1 of grain, manure treatments significantly reduced the CF by 22%-208% over NPK treatment. It was concluded that replacing 50% of synthetic fertilizer with manure was a sound option for achieving high crop yield and SYI but low CF under the tested cropping system.
Assuntos
Pegada de Carbono , Fertilizantes , Esterco , Solo , Triticum , Zea mays , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Solo/química , Carbono , Estações do Ano , Nitrogênio , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Gases de Efeito EstufaRESUMO
Linkage isomers (α-2,3- or α-2,6-linkage) of sialylated N-glycans are involved in the emergence and progression of some diseases, so they are of great significance for diagnosing and monitoring diseases. However, the qualitative and quantitative analysis of sialylated N-glycan linkage isomers remains challenging due to their low abundance and limited isomeric separation techniques. Herein, we developed a novel strategy integrating one-step sialic acid derivatization, positive charge-sensitive separation and highly sensitive detection based on microfluidic capillary electrophoresis-mass spectrometry (MCE-MS) for fast and specific analysis of α-2,3- and α-2,6-linked sialylated N-glycan isomers. A kind of easily charged long-chain amino compound was screened first for one-step sialic acid derivatization so that only α-2,3- and α-2,6-linked isomers can be quickly and efficiently separated within 10 min by MCE due to the difference in structural conformation, whose separation mechanism was further theoretically supported by molecular dynamic simulation. In addition, different sialylated N-glycans were separated in order according to the number of sialic acids, so that a migration time-based prediction of the number of sialic acids was achieved. Finally, the sialylated N-glycome of human serum was profiled within 10 min and 6 of the 52 detected sialylated N-glycans could be potential diagnostic biomarkers of cervical cancer (CC), whose α-2,3- and α-2,6-linked isomers were distinguished by α-2,3Neuraminidase S.
Assuntos
Microfluídica , Ácido N-Acetilneuramínico , Eletroforese Capilar , Humanos , Espectrometria de Massas , Polissacarídeos/química , Ácidos Siálicos/análiseRESUMO
We investigated the biosynthetic pathway of type II polyketide murayaquinone. The murayaquinone biosynthetic cluster contains genes for three putative short-chain dehydrogenase/reductase family enzymes including MrqF and MrqH with known functions and MrqM with unclear function. We report the functional characterization of MrqM for its role in murayaquinone biosynthesis. Our gene deletion experiment and structural elucidation of the accumulated intermediates revealed that MrqM is related with the second polyketide ring cyclization, because the inactivation of mrqM resulted in the accumulation of an off-pathway intermediate SEK43 and disrupted the second and third ring cyclization. Site-directed mutagenesis studies showed that two conserved residues in MrqM and homologous proteins Y151 and K155 are essential for its activity. The previously proposed second/third ring cyclase, MrqD, might instead play another important role in the chain releasing step of the murayaquinone biosynthesis.
Assuntos
Oxirredutases/metabolismo , Policetídeos/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Estrutura Molecular , Policetídeos/químicaRESUMO
We developed a voltage-sensitive artificial transmembrane channel by mimicking the dipolar structure of natural alamethicin channel. The artificial channel featured a zwitterionic structure and could undergo voltage-driven flipping in the lipid bilayers. Importantly, this flipping of the channel could lead to their directional alignment in the bilayers and rectifying behavior for ion transport.
Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Condutividade Elétrica , Transporte de Íons , Estrutura Molecular , Prata/química , Compostos de Prata/químicaRESUMO
The d-glucose/d-galactose-binding protein (GGBP) from Escherichia coli is a substrate-binding protein (SBP) associated with sugar transport and chemotaxis. It is also a calcium-binding protein, which makes it unique in the SBP family. However, the functional importance of Ca2+ binding is not fully understood. Here, the calcium-dependent properties of GGBP were explored by all-atom molecular dynamics simulations and Markov state model (MSM) analysis as well as single-molecule Förster resonance energy transfer (smFRET) measurements. In agreement with previous experimental studies, we observed the structure stabilization effect of Ca2+ binding on the C-terminal domain of GGBP, especially the Ca2+-binding site. Interestingly, the MSMs of calcium-depleted GGBP and calcium-bound GGBP (GGBP/Ca2+) demonstrate that Ca2+ greatly stabilizes the open conformation, and smFRET measurements confirmed this result. Further analysis reveals that Ca2+ binding disturbs the local hydrogen bonding interactions and the conformational dynamics of the hinge region, thereby weakening the long-range interdomain correlations to favor the open conformation. These results suggest an active regulatory role of Ca2+ binding in GGBP, which finely tunes the conformational distribution. The work sheds new light on the study of calcium-binding proteins in prokaryotes.
Assuntos
Proteínas de Escherichia coli , Galactose , Cálcio , Glucose , Conformação Molecular , Conformação ProteicaRESUMO
Intrinsically disordered proteins (IDPs) play important roles in cellular functions. The inherent structural heterogeneity of IDPs makes the high-resolution experimental characterization of IDPs extremely difficult. Molecular dynamics (MD) simulation could provide the atomic-level description of the structural and dynamic properties of IDPs. This perspective reviews the recent progress in atomic MD simulation studies of IDPs, including the development of force fields and sampling methods, as well as applications in IDP-involved protein-protein interactions. The employment of large-scale simulations and advanced sampling techniques allows more accurate estimation of the thermodynamics and kinetics of IDP-mediated protein interactions, and the holistic landscape of the binding process of IDPs is emerging.
Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização ProteicaRESUMO
Self-assembly is ubiquitous in the realm of biology and has become an elegant bottom-up approach to fabricate new materials. Although molecular dynamics (MD) simulations can complement experiments by providing the missing atomic details, it still remains a grand challenge to reveal the thermodynamic and kinetic information on a self-assembly system. In this work, we demonstrate for the first time that the Markov state model analysis can be used to delineate the variation of free energy during the self-assembly process of a typical amphiphilic lipid dipalmitoyl-phosphatidylcholine (DPPC). Free energy profiles against the solvent-accessible surface area and the root-mean-square deviation have been derived from extensive MD results of more than five hundred trajectories, which identified a metastable crossing-cylinder (CC) state and a transition state of the distorted bilayer with a free energy barrier of â¼0.02 kJ mol-1 per DPPC lipid, clarifying a long-standing speculation for 20 years that there exists a free energy barrier during lipid self-assembly. Our simulations also unearth two mesophase structures at the early stage of self-assembly, discovering two assembling pathways to the CC state that have never been reported before. Further thermodynamic analysis derives the contributions from the enthalpy and the entropy terms to the free energy, demonstrating the critical role played by the enthalpy-entropy compensation. Our strategy opens the door to quantitatively understand the self-assembly processes in general and provides new opportunities for identifying common thermodynamic and kinetic patterns in different self-assembly systems and inspiring new ideas for experiments. It may also contribute to the refinement of force field parameters of various self-assembly systems.
Assuntos
Lipídeos/química , Cadeias de Markov , Modelos Moleculares , 1,2-Dipalmitoilfosfatidilcolina/química , Hidrodinâmica , Cinética , Conformação Molecular , TermodinâmicaRESUMO
Artificial aquaporins are synthetic molecules that mimic the structure and function of natural aquaporins (AQPs) in cell membranes. The development of artificial aquaporins would provide an alternative strategy for treatment of AQP-related diseases. In this report, an artificial aquaporin has been constructed from an amino-terminated tubular molecule, which operates in a unimolecular mechanism. The artificial channel can work in cell membranes with high water permeability and selectivity rivaling those of AQPs. Importantly, the channel can restore wound healing of the cells that contain function-lost AQPs.
Assuntos
Aquaporinas/farmacologia , Cicatrização/efeitos dos fármacos , Aquaporinas/química , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Imagem Individual de MoléculaRESUMO
p53 is a tumor suppressor protein that maintains genome stability, but its Δ133p53ß and Δ160p53ß isoforms promote breast cancer cell invasion. The sequence truncations in the p53 core domain raise key questions related to their physicochemical properties, including structural stabilities, interaction mechanisms, and DNA-binding abilities. Herein, we investigated the conformational dynamics of Δ133p53ß and Δ160p53ß with and without binding to p53-specific DNA by using molecular dynamics simulations. We observed that the core domains of the 2 truncated isoforms are much less stable than wild-type (wt) p53ß, and the increased solvent exposure of their aggregation-triggering segment indicates their higher aggregation propensities than wt p53. We also found that Δ133p53ß stability is modulable by peptide or DNA interactions. Adding a p53 peptide (derived from truncated p53 sequence 107-129) may help stabilize Δ133p53. Most importantly, our simulations of p53 isomer-DNA complexes indicate that Δ133p53ß dimer, but not Δ160p53ß dimer, could form a stable complex with p53-specific DNA, which is consistent with recent experiments. This study provides physicochemical insight into Δ133p53ß, Δ133p53ß-DNA complexes, Δ133p53ß's pathologic mechanism, and peptide-based inhibitor design against p53-related cancers.-Lei, J., Qi, R., Tang, Y., Wang, W., Wei, G., Nussinov, R., Ma, B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53ß are modulated by p53 peptides and p53-specific DNA.
Assuntos
DNA/metabolismo , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Linhagem Celular Tumoral , Humanos , Simulação de Dinâmica MolecularRESUMO
Drosophila brain tumor (Brat) is a translational repressor belonging to the tripartite motif (TRIM) protein superfamily. During the asymmetric division of Drosophila neuroblasts, Brat localizes at the basal cortex via direct interaction with the scaffolding protein Miranda (Mira), and segregates into the basal ganglion mother cells after cell division. It was previously reported that both the coiled-coil (CC) and NHL domains of Brat are required for the interaction with Mira, but the underlying structural basis is elusive. Here, we determine the crystal structure of Brat-CC domain (aa 376-511) at 2.5 Å, showing that Brat-CC forms an elongated antiparallel dimer through an unconventional CC structure. The dimeric assembly in Brat-CC structure is similar to its counterparts in other TRIM proteins, but Brat-CC also exhibits some distinct structural features. We also demonstrate that the CC domain could not bind Mira by its own, neither does the isolated NHL domain of Brat. Rather, Brat binds to Mira through the CC-NHL domain tandem, indicating that the function of the CC domain is to assemble Brat-NHL in dimeric form, which is necessary for Mira binding.
Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Animais , Cristalografia por Raios X , Modelos Moleculares , Domínios ProteicosRESUMO
In conventional "Venus Flytrap" mechanism, substrate-binding proteins (SBPs) interconvert between the open and closed conformations. Upon ligand binding, SBPs form a tightly closed conformation with the ligand bound at the interface of two domains. This mechanism was later challenged by many type III SBPs, such as the vitamin B12 -binding protein BtuF, in which the apo- and holo-state proteins adopt very similar conformations. Here, we combined molecular dynamics simulation and Markov state model analysis to study the conformational dynamics of apo- and B12 -bound BtuF. The results indicate that the crystal structures represent the only stable conformation of BtuF. Meanwhile, both apo- and holo-BtuF undergo large-scale interdomain motions with little energy cost. B12 binding casts little restraints on the interdomain motions, suggesting that ligand binding affinity is enhanced by the remaining conformational entropy of holo-BtuF. These results reveal a new paradigm of ligand recognition mechanism of SBPs. © 2019 Wiley Periodicals, Inc.
Assuntos
Proteínas de Escherichia coli/química , Cadeias de Markov , Simulação de Dinâmica Molecular , Proteínas Periplásmicas de Ligação/química , Sítios de Ligação , Cristalografia por Raios X , Cinética , Ligantes , Conformação ProteicaRESUMO
TolC is a channel protein responsible for substrate translocation across the outer membrane, and it is also a part of the tripartite multidrug efflux pumps in Gram-negative bacteria. The crystal structure of TolC shows that the periplasmic entrance is tightly closed in the resting state, while substrate translocation definitely requires the entrance to open. How the occluded periplasmic entrance opens to allow passage of substrates remains elusive. In this work, we constructed a Markov state model from swarms of all-atom molecular dynamics (MD) simulation trajectories, which delineates the energetics of the conformational changes of TolC. Opening of the periplasmic entrance results in a monotonic increase in free energy and is accompanied by disruption of interprotomer interactions, whereas the intraprotomer interactions remain intact. Multi-ion potential of mean force (PMF) profiles for Na+ and Cl- permeation along the channel have been calculated, and the cation/anion permeability ratio derived from which are in good agreement with electrophysiological experiments. These results not only deepen our understanding of conformational dynamics of isolated TolC but also provide valuable vision of its functioning state in tripartite efflux pumps.
Assuntos
Ativação do Canal Iônico , Cadeias de Markov , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Periplasma/metabolismo , Permeabilidade , Conformação ProteicaRESUMO
Asymmetric cell division requires the establishment of cortical cell polarity and the orientation of the mitotic spindle along the axis of cell polarity. Evidence from invertebrates demonstrates that the Par3/Par6/aPKC and NuMA/LGN/Gαi complexes, which are thought to be physically linked by the adaptor protein mInscuteable (mInsc), play indispensable roles in this process. However, the molecular basis for the binding of LGN to NuMA and mInsc is poorly understood. The high-resolution structures of the LGN/NuMA and LGN/mInsc complexes presented here provide mechanistic insights into the distinct and highly specific interactions of the LGN TPRs with mInsc and NuMA. Structural comparisons, together with biochemical and cell biology studies, demonstrate that the interactions of NuMA and mInsc with LGN are mutually exclusive, with mInsc binding preferentially. Our results suggest that the Par3/mInsc/LGN and NuMA/LGN/Gαi complexes play sequential and partially overlapping roles in asymmetric cell division.
Assuntos
Antígenos Nucleares/química , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Divisão Celular/fisiologia , Proteínas Associadas à Matriz Nuclear/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular , Cristalografia por Raios X , Escherichia coli/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Humanos , Camundongos , Modelos Moleculares , Mutagênese , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico , Fuso Acromático/metabolismoRESUMO
GoLoco motif-containing proteins regulate the nucleotide-binding state of Gα proteins in various signaling pathways. As guanine nucleotide dissociation inhibitors (GDIs), they bind Gα·GDP and inhibit GDP to GTP exchange. GoLoco proteins show binding selectivity toward different members of the Gα family. Although the Gαi1·GDP/RGS14 crystal structure explains the specific binding selectivity of the RGS14 GoLoco domain well, the mechanism of selective binding has not been understood for the more general features of short GoLoco domains found in tandem arrays in proteins like GPSM2/LGN/ dPins and GPSM1/AGS3. We explored the mechanism of differential interactions of GoLoco protein LGN with hGαi3 and hGαo. By combining mutagenesis experiments and molecular dynamics simulations, we identified a residue (Asp229 in hGαi3) away from the binding interface that remarkably affects the interaction between LGN and hGαi/o. A negatively charged residue at this position is required for high binding affinity. This affinity regulation mechanism was further verified by the cases of hGαi2 and dGαo, suggesting that this pathway is conserved among members of the Gα family.
Assuntos
Proteínas de Transporte/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Ciclo Celular , Cristalografia por Raios X , Drosophila , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Inibidores de Dissociação do Nucleotídeo Guanina/química , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de SequênciaRESUMO
N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are involved in the fusion of vesicles with their target membranes. R-SNARE protein Ykt6 is one of the most conserved SNARE in eukaryotes. The conformational state of Ykt6 is regulated by the lipidations at its C-terminal motif. Previous studies show that the binding of dodecylphosphocholine (DPC) can stabilize a closed conformation of rat Ykt6 (rYkt6) and mimic the farnesylated rYkt6. Despite this model, the detailed conformational dynamics of Ykt6 is still unclear. Here, we combined smFRET and MD simulation to demonstrate that the un-lipidated rYkt6 adopts five major conformational states. DPC binding shifts the conformational distribution toward the more closed states. At the same time, there remain considerable fractions of open and semi-open conformations in the presence of DPC. These newly revealed dynamic features of rYkt6 are consistent with its unique functional diversity in neuronal cells.
Assuntos
Simulação de Dinâmica Molecular , Fosforilcolina/análogos & derivados , Proteínas R-SNARE/química , Animais , Sítios de Ligação , Carbocianinas/química , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Mutação , Fosforilcolina/química , Fosforilcolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Ácidos Sulfônicos/químicaRESUMO
In this study, we prepared biocompatible superhydrophilic and underwater superoleophobic tannic acid (TA)/polyvinylpyrrolidone (PVP)-coated stainless-steel meshes that mediated extremely efficient separations of mixtures of oil and water. These TA/PVP-coated stainless-steel meshes displayed excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 24 h. Moreover, a funnel-like TA/PVP-coated stainless-steel mesh device could be used for underwater oil transportation and collection. In conjunction with our continuous oil removal system, this device allowed for the continuous collection and removal of oil pollutants from underwater environments. The high performance of these TA/PVP-coated stainless-steel meshes and their green, low-energy, cost-effective preparation suggests great potential for practical applications.