Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7864): 594-598, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33911284

RESUMO

G-protein-coupled receptors (GPCRs) have central roles in intercellular communication1,2. Structural studies have revealed how GPCRs can activate G proteins. However, whether this mechanism is conserved among all classes of GPCR remains unknown. Here we report the structure of the class-C heterodimeric GABAB receptor, which is activated by the inhibitory transmitter GABA, in its active form complexed with Gi1 protein. We found that a single G protein interacts with the GB2 subunit of the GABAB receptor at a site that mainly involves intracellular loop 2 on the side of the transmembrane domain. This is in contrast to the G protein binding in a central cavity, as has been observed with other classes of GPCR. This binding mode results from the active form of the transmembrane domain of this GABAB receptor being different from that of other GPCRs, as it shows no outside movement of transmembrane helix 6. Our work also provides details of the inter- and intra-subunit changes that link agonist binding to G-protein activation in this heterodimeric complex.


Assuntos
Proteínas de Ligação ao GTP/química , Receptores de GABA-B/química , Microscopia Crioeletrônica , Humanos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Terciária de Proteína
2.
Nature ; 594(7864): 589-593, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135509

RESUMO

The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.


Assuntos
Receptores de Glutamato Metabotrópico/química , Microscopia Crioeletrônica , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína
3.
Proc Natl Acad Sci U S A ; 119(22): e2120633119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605119

RESUMO

Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiency­driven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis. As a C2H2 (Cys2-His2) zinc finger-containing TF, ZNF280C occupied genomic intervals with both transcriptionally active and repressive states and coincided with CCCTC-binding factor (CTCF) and cohesin binding. Notably, ZNF280C was crucial for the repression program of trimethylation of histone H3 at lysine 27 (H3K27me3)-marked genes and the maintenance of both focal and broad H3K27me3 levels. Mechanistically, ZNF280C counteracted CTCF/cohesin activities and condensed the chromatin environment at the cis elements of certain tumor suppressor genes marked by H3K27me3, at least partially through recruiting the epigenetic repressor structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1). In clinical relevance, ZNF280C was highly expressed in primary CRCs and distant metastases, and a higher ZNF280C level independently predicted worse prognosis of CRC patients. Thus, our study uncovered a contributor with good prognostic value to CRC pathogenesis and also elucidated the essence of DNA-binding TFs in orchestrating the epigenetic programming of gene regulation.


Assuntos
Cromatina , Neoplasias Colorretais , Repressão Epigenética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA , Histonas/genética , Histonas/metabolismo , Humanos , Prognóstico , Fatores de Transcrição , Dedos de Zinco
4.
Artigo em Inglês | MEDLINE | ID: mdl-38485057

RESUMO

BACKGROUND: MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE: We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS: Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS: Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS: Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.

5.
J Biol Chem ; 299(3): 102962, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717079

RESUMO

Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.


Assuntos
Vírus da Leucose Aviária , Doenças das Aves Domésticas , Receptores Virais , Vitamina B 12 , Animais , Vírus da Leucose Aviária/genética , Galinhas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Complexo Vitamínico B , Vitamina B 12/metabolismo
6.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462771

RESUMO

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Peroxidação de Lipídeos , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico
7.
Biochem Biophys Res Commun ; 725: 150265, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38901225

RESUMO

With the substantial increase in the overuse of glucocorticoids (GCs) in clinical medicine, the prevalence of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) continues to rise in recent years. However, the optimal treatment for GC-ONFH remains elusive. Rotating magnetic field (RMF), considered as a non-invasive, safe and effective approach, has been proved to have multiple beneficial biological effects including improving bone diseases. To verify the effects of RMF on GC-ONFH, a lipopolysaccharide (LPS) and methylprednisolone (MPS)-induced invivo rat model, and an MPS-induced invitro cell model have been employed. The results demonstrate that RMF alleviated bone mineral loss and femoral head collapse in GC-ONFH rats. Meanwhile, RMF reduced serum lipid levels, attenuated cystic lesions, raised the expression of anti-apoptotic proteins and osteoprotegerin (OPG), while suppressed the expression of pro-apoptotic proteins and nuclear factor receptor activator-κB (RANK) in GC-ONFH rats. Besides, RMF also facilitated the generation of ALP, attenuated apoptosis and inhibits the expression of pro-apoptotic proteins, facilitated the expression of OPG, and inhibited the expression of RANK in MPS-stimulated MC3T3-E1 cells. Thus, this study indicates that RMF can improve GC-ONFH in rat and cell models, suggesting that RMF have the potential in the treatment of clinical GC-ONFH.

8.
J Virol ; 97(1): e0178522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511697

RESUMO

Type I interferon (IFN) response is the first line of host-based innate immune defense against viral infections. However, viruses have developed multiple strategies to counter host IFN responses, so they may continue infecting hosts via effective replication. Avian reovirus (ARV), an RNA virus, causes viral arthritis or tenosynovitis in chickens. Previous studies have shown that ARV is highly resistant to the antiviral effects of IFN. However, the underlying mechanisms that enable ARV to block the IFN pathway remain unclear. In this study, we found that ectopic expression of ARV protein, σA, significantly inhibited the production of IFN-ß induced by melanoma-differentiation-associated gene 5 (MDA5) and poly(I·C). Knockdown of σA during ARV infection enhances the IFN-ß response and suppresses viral replication. ARV σA inhibited the MDA5-mediated IFN-ß activation by targeting interferon regulatory factor 7 (IRF7). Further studies demonstrated that σA interacts with IRF7, thereby blocking IRF7 dimerization and nuclear translocation, finally leading to the inhibition of IFN-ß production. These findings reveal a novel mechanism that allows ARV to evade host antiviral immunity. IMPORTANCE ARV, the causative agent of viral arthritis or tenosynovitis in chickens, has a significant economic impact as it results in poor weight gain and increased feed conversion ratios. The MDA5-mediated IFN-ß signal pathway plays an important role in host antiviral defense. Therefore, RNA viruses have developed mechanisms to counter this signaling pathway and successfully establish infection. However, the strategies adopted by ARV to block MDA5-IRF7 signaling remain unclear. In the current study, we demonstrated that ARV σA inhibits this pathway by binding to IRF7, which blocked IRF7 dimerization and nuclear translocation. Our findings may provide insights into how avian reovirus counteracts the innate antiviral immunity of the host to ensure viral replication.


Assuntos
Fator Regulador 7 de Interferon , Interferon Tipo I , Orthoreovirus Aviário , Tenossinovite , Proteínas do Core Viral , Animais , Linhagem Celular , Galinhas/virologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Orthoreovirus Aviário/fisiologia , Tenossinovite/veterinária , Tenossinovite/virologia , Proteínas do Core Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo
9.
Microb Pathog ; 188: 106563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331355

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS: Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS: Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, ß diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS: Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Microbioma Gastrointestinal , Humanos , Artrite Reumatoide/tratamento farmacológico , Intestinos , Inflamação
10.
Anal Bioanal Chem ; 416(1): 287-297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37938412

RESUMO

Bile acids (BAs) are involved in the development of necrotizing enterocolitis (NEC), which mainly occurs in preterm infants. We aim to identify the change of BAs in preterm infants and validate its potential value in the detection of NEC. Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to measure the plasma BAs in healthy preterm infants and patients with NEC. By analyzing the level of BAs in healthy preterm infants, we found that the plasma concentrations of BAs were related to sex, gestational/postnatal age, birth weight, mode of birth, and feeding type after birth. The plasma levels of TCA, GCA, TCDCA, GCDCA, primary BAs, and total BAs and the primary/secondary BA ratio were decreased, while DCA, UDCA, and secondary BAs were increased in NEC. The primary/secondary BA ratio (cutoff point 62.9) can effectively differentiate NEC from healthy preterm infants, with an AUC of 0.9, a sensitivity of 94.5%, and a specificity of 78.1%. Combining the ratio with high-risk factors of NEC can better distinguish between NEC and control, with an AUC of 0.95. Importantly, significantly lower levels of primary/secondary BA ratio were found in infants with surgical NEC than in nonsurgical NEC cases. The cutoff point of 28.7 identified surgical NEC from nonsurgical NEC with sensitivity and specificity of 76.9% and 100%. Thus, our study identified that the primary/secondary BA ratio in the plasma can differentiate NEC from healthy preterm infants and effectively differentiate the surgical NEC from nonsurgical NEC. Therefore, LC-MS/MS was expected to be a novel measurement platform used to distinguish infants who are most in need of close monitoring or early surgical intervention.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Ácidos e Sais Biliares , Cromatografia Líquida , Espectrometria de Massas em Tandem , Enterocolite Necrosante/diagnóstico , Espectrometria de Massa com Cromatografia Líquida , Biomarcadores
11.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074783

RESUMO

Oxygen concentration defines the chemical structure of Earth's ecosystems while it also fuels the metabolism of aerobic organisms. As different aerobes have different oxygen requirements, the evolution of oxygen levels through time has likely impacted both environmental chemistry and the history of life. Understanding the relationship between atmospheric oxygen levels, the chemical environment, and life, however, is hampered by uncertainties in the history of oxygen levels. We report over 5,700 Raman analyses of organic matter from nine geological formations spanning in time from 742 to 1,729 Ma. We find that organic matter was effectively oxidized during weathering and little was recycled into marine sediments. Indeed, during this time interval, organic matter was as efficiently oxidized during weathering as it is now. From these observations, we constrain minimum atmospheric oxygen levels to between 2 to 24% of present levels from the late Paleoproterozoic Era into the Neoproterozoic Era. Indeed, our results reveal that eukaryote evolution, including early animal evolution, was not likely hindered by oxygen through this time interval. Our results also show that due to efficient organic recycling during weathering, carbon cycle dynamics can be assessed directly from the sediment carbon record.


Assuntos
Atmosfera/química , Carbono/química , Fósseis , Oxigênio/química , Ciclo do Carbono , Ecossistema , História Antiga
12.
BMC Med Educ ; 24(1): 388, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594653

RESUMO

BACKGROUND: Flexible hybrid teaching has become the new normal of basic medical education in the postepidemic era. Identifying ways to improve the quality of curriculum teaching and achieve high-level talent training is a complex problem that urgently needs to be solved. Over the course of the past several semesters, the research team has integrated design thinking (DT) into undergraduate teaching to identify, redesign and solve complex problems in achieving curriculum teaching and professional talent training objectives. METHODS: This study is an observational research. A total of 156 undergraduate stomatology students from Jining Medical University in 2021 were selected to participate in two rounds of online flipped teaching using the design thinking EDIPT (empathy, definition, idea, prototype, and test) method. This approach was applied specifically to the chapters on the respiratory system and female reproductive system. Data collection included student questionnaires, teacher-student interviews, and exam scores. GraphPad Prism software was used for data analysis, and the statistical method was conducted by multiple or unpaired t test. RESULTS: According to the questionnaire results, the flipped classroom teaching design developed using design thinking methods received strong support from the majority of students, with nearly 80% of students providing feedback that they developed multiple abilities during the study process. The interview results indicated that teachers generally believed that using design thinking methods to understand students' real needs, define teaching problems, and devise instructional design solutions, along with testing and promptly adjusting the effectiveness through teaching practices, played a highly positive role in improving teaching and student learning outcomes. A comparison of exam scores showed a significant improvement in the exam scores of the class of 2021 stomatology students in the flipped teaching chapters compared to the class of 2020 stomatology students, and this difference was statistically significant. However, due to the limitation of the experimental chapter scope, there was no significant difference in the overall course grades. CONCLUSION: The study explores the application of design thinking in histology and embryology teaching, revealing its positive impact on innovative teaching strategies and students' learning experience in medical education. Online flipped teaching, developed through design thinking, proves to be an effective and flexible method that enhances student engagement and fosters autonomous learning abilities.


Assuntos
Currículo , Aprendizagem Baseada em Problemas , Humanos , Feminino , Aprendizagem Baseada em Problemas/métodos , Aprendizagem , Estudantes , Inquéritos e Questionários , Ensino
13.
Angew Chem Int Ed Engl ; 63(8): e202317594, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38183405

RESUMO

Hydrocracking catalysis is a key route to plastic waste upgrading, but the acid site-driven C-C cleavage step is relatively sluggish in conventional bifunctional catalysts, dramatically effecting the overall efficiency. We demonstrate here a facile and efficient way to boost the reactivity of acid sites by introducing Ce promoters into Pt/HY catalysts, thus achieving a better metal-acid balance. Remarkably, 100 % of low-density polyethylene (LDPE) can be converted with 80.9 % selectivity of liquid fuels over the obtained Pt/5Ce-HY catalysts at 300 °C in 2 h. For comparison, Pt/HY only gives 38.8 % of LDPE conversion with 21.3 % selectivity of liquid fuels. Through multiple experimental studies on the structure-performance relationship, the Ce species occupied in the supercage are identified as the actual active sites, which possess remarkably-improved adsorption capability towards short-chain intermediates.

14.
Angew Chem Int Ed Engl ; : e202407733, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735859

RESUMO

The variability of CO2 hydrogenation reaction demands new potential strategies to regulate the fine structure of the catalysts for optimizing the reaction pathways. Herein, we report a dual-site strategy to boost the catalytic efficiency of CO2-to-methanol conversion. A new descriptor, τ, was initially established for screening the promising candidates with low-temperature activation capability of CO2, and sequentially a high-performance catalyst was fabricated centred with oxophilic Mo single atoms, who was further decorated with Pt nanoparticles. In CO2 hydrogenation, the obtained dual-site catalysts possess a remarkably-improved methanol generation rate (0.27 mmol gcat. -1 h-1). For comparison, the singe-site Mo and Pt-based catalysts can only produce ethanol and formate acid at a relatively low reaction rate (0.11 mmol gcat. -1 h-1 for ethanol and 0.034 mmol gcat. -1 h-1 for formate acid), respectively. Mechanism studies indicate that the introduction of Pt species could create an active hydrogen-rich environment, leading to the alterations of the adsorption configuration and conversion pathways of the *OCH2 intermediates on Mo sites. As a result, the catalytic selectivity was successfully switched.

15.
Small ; 19(28): e2300919, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36967559

RESUMO

Assembling quantum dots (QDs) into van der Waals (vdW)-layered superstructure holds great promise for the development of high-energy-density metal anode. However, designing such a superstructure remains to be challenging. Here, a chemical-vapor Oriented Attachment (OA) growth strategy is proposed to achieve the synthesis of vdW-layered carbon/QDs hybrid superlattice nanosheets (Fe7 S8 @CNS) with a large vdW gap of 3 nm. The Fe7 S8 @CNS superstructure is assembled by carbon-coated Fe7 S8 (Fe7 S8 @C) QDs as building blocks. Interestingly, the Fe7 S8 @CNS exhibits two kinds of edge dislocations similar to traditional atom-layered materials, suggesting that Fe7 S8 @C QDs exhibit quasi-atomic growth behavior during the OA process. More interestingly, when used as host materials for sodium metal anodes, the Fe7 S8 @CNS shows the interlayer sodium plating/stripping behavior, which well suppresses Na dendrite growth. As a result, the cell with Fe7 S8 @CNS anode can keep stable cycling for 1000 h with a high Coulombic efficiency (CE) of ≈99.5% at 3.0 mA cm-2 and 3.0 mAh cm-2 . Noticeably, the Na@Fe7 S8 @CNS||Na3 V2 (PO4 )3 full cells can attain a capacity of 88.8 mAh g-1 with a retention of 97% after 1000 cycles at 1.0 A g-1 (≈8 C), showing excellent cycle stability for practical applications. This work enriches the vdW-layered QDs superstructure family and their application toward energy storage.

16.
Small ; 19(47): e2304245, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480178

RESUMO

The robust and scalable oxygen evolution electrocatalysts that can deliver high current densities at low applied potential is a great challenge for the large-scale industrial application in hydrogen production. Here, the preparation of a grain-boundary-rich Ni-Fe (oxy)hydroxide catalyst on Ni foam is reported using a scalable coating approach followed by a chemical precipitating treatment. This facile method effectively assembles the hierarchical Ni-Fe (oxy)hydroxide nanosheet in the ultrasmall crystalline domains (<4 nm) with rich grain boundaries. The hierarchical nanosheet structure with the grain boundaries provides more accessible catalytic sites, facile charge, and mass transfer. Benefiting from the abundant grain boundaries in the hierarchical nanosheets, the as-prepared Ni-Fe (oxy)hydroxide electrodes deliver current densities of 500 and 1000 mA cm-2 at overpotentials of only 278 and 296 mV for the oxygen evolution reaction. The prepared electrode also exhibits long-term durability at a high current density in alkaline conditions.

17.
Small ; 19(39): e2302097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226377

RESUMO

Na3 V2 (PO4 )2 O2 F (NVPOF) is widely accepted as advanced cathode material for sodium-ion batteries with high application prospects ascribing to its considerable specific capacity and high working voltage. However, challenges in the full realization of its theoretical potential lie in the novel structural design to accelerate its Na+ diffusivity. Herein, considering the important role of polyanion groups in constituting Na+ diffusion tunnels, boron (B) is doped at the P-site to obtain Na3 V2 (P2- x Bx O8 )O2 F (NVP2- x Bx OF). As evidenced by density functional theory modeling, B-doping induces a dramatic decrease in the bandgap. Delocalization of electrons on the O anions in BO4 tetrahedra is observed in NVP2- x Bx OF, which dramatically lowers the electrostatic resistance experienced by Na+ . As a result, the Na+ diffusivity in the NVP2- x Bx OF cathode has accelerated up to 11 times higher, which secures a high rate property (67.2 mAh g-1 at 60 C) and long cycle stability (95.9% capacity retention at 108.6 mAh g-1 at 10 C after 1000 cycles). The assembled NVP1.90 B0.10 OF//Se-C full cell demonstrates exceptional power/energy density (213.3 W kg-1 @ 426.4 Wh kg-1 and 17970 W kg-1 @ 119.8 Wh kg-1 ) and outstanding capability to withstand long cycles (90.1% capacity retention after 1000 cycles at 105.3 mAh g-1 at 10 C).

18.
Biol Reprod ; 109(5): 570-585, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669135

RESUMO

The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.


Assuntos
Anemia de Fanconi , Humanos , Feminino , Adulto , Anemia de Fanconi/complicações , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Reparo do DNA/genética , Replicação do DNA , Ubiquitinação , Mutação , Dano ao DNA
19.
J Virol ; 96(24): e0157822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448809

RESUMO

Cyclic GMP-AMP synthase (cGAS), a key DNA sensor, detects cytosolic viral DNA and activates the adaptor protein stimulator of interferon genes (STING) to initiate interferon (IFN) production and host innate antiviral responses. Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality in waterfowl. In the present study, we found that DEV inhibits host innate immune responses during the late phase of viral infection. Furthermore, we screened DEV proteins for their ability to inhibit the cGAS-STING DNA-sensing pathway and identified multiple viral proteins, including UL41, US3, UL28, UL53, and UL24, which block IFN-ß activation through this pathway. The DEV tegument protein UL41, which exhibited the strongest inhibitory effect, selectively downregulated the expression of interferon regulatory factor 7 (IRF7) by reducing its mRNA accumulation, thereby inhibiting the DNA-sensing pathway. Ectopic expression of UL41 markedly reduced viral DNA-triggered IFN-ß production and promoted viral replication, whereas deficiency of UL41 in the context of DEV infection increased the IFN-ß response to DEV and suppressed viral replication. In addition, ectopic expression of IRF7 inhibited the replication of the UL41-deficient virus, whereas IRF7 knockdown facilitated its replication. This study is the first report identifying multiple viral proteins encoded by a duck DNA virus, which inhibit the cGAS-STING DNA-sensing pathway. These findings expand our knowledge of DNA sensing in ducks and reveal a mechanism through which DEV antagonizes the host innate immune response. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication of many DNA viruses. However, the mechanisms used by DEV to modulate the DNA-sensing pathway remain poorly understood. In the present study, we found that DEV encodes multiple viral proteins to inhibit the cGAS-STING DNA-sensing pathway. The DEV tegument protein UL41 selectively diminished the accumulation of interferon regulatory factor 7 (IRF7) mRNA, thereby inhibiting the DNA-sensing pathway. Loss of UL41 potently enhanced the IFN-ß response to DEV and impaired viral replication in ducks. These findings provide insights into the host-virus interaction during DEV infection and help develop new live attenuated vaccines against DEV.


Assuntos
Alphaherpesvirinae , Patos , Imunidade Inata , Nucleotidiltransferases , Proteínas Virais , Animais , DNA Viral/genética , DNA Viral/metabolismo , Enterite/imunologia , Enterite/virologia , Imunidade Inata/genética , Fator Regulador 7 de Interferon/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Evasão da Resposta Imune/genética , Alphaherpesvirinae/genética , Alphaherpesvirinae/imunologia
20.
J Virol ; 96(6): e0011322, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107370

RESUMO

Infectious bursal disease virus (IBDV), which targets bursa B lymphocytes, causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. To date, the functional receptor for IBDV binding and entry into host cells remains unclear. This study used mass spectrometry to screen host proteins of chicken bursal lymphocytes interacting with VP2. The chicken transmembrane protein cluster of differentiation 44 (chCD44) was identified and evaluated for its interaction with IBDV VP2, the major capsid protein. Overexpression and knockdown experiments showed that chCD44 promotes replication of IBDV. Furthermore, soluble chCD44 and the anti-chCD44 antibody blocked virus binding. The results of receptor reconstitution indicated that chCD44 overexpression conferred viral binding capability in nonpermissive cells. More important, although we found that IBDV could not replicate in the chCD44-overexpressed nonpermissive cells, the virus could enter nonpermissive cells using chCD44. Our finding reveals that chCD44 is a cellular receptor for IBDV, facilitating virus binding and entry in target cells by interacting with the IBDV VP2 protein. IMPORTANCE Infectious bursal disease virus (IBDV) causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. However, the specific mechanism of IBDV invading host cells of IBDV was not very clear. This study shed light on which cellular protein component IBDV is used to bind and/or enter B lymphocytes. The results of our study revealed that chCD44 could promote both the binding and entry ability of IBDV in B lymphocytes, acting as a cellular receptor for IBDV. Besides, this is the first report about chicken CD44 function in viral replication. Our study impacts the understanding of the IBDV binding and entry process and sets the stage for further elucidation of the infection mechanism of IBDV.


Assuntos
Infecções por Birnaviridae , Receptores de Hialuronatos , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Linfócitos B/metabolismo , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Galinhas , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa