Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804201

RESUMO

Protein-based drugs offer advantages, such as high specificity, low toxicity, and minimal side effects compared to small molecule drugs. However, delivery of proteins to target tissues or cells remains challenging due to the instability, diverse structures, charges, and molecular weights of proteins. Polymers have emerged as a leading choice for designing effective protein delivery systems, but identifying a suitable polymer for a given protein is complicated by the complexity of both proteins and polymers. To address this challenge, a fluorescence-based high-throughput screening platform called ProMatch to efficiently collect data on protein-polymer interactions, followed by in vivo and in vitro experiments with rational design is developed. Using this approach to streamline polymer selection for targeted protein delivery, candidate polymers from commercially available options are identified and a polyhexamethylene biguanide (PHMB)-based system for delivering proteins to white adipose tissue as a treatment for obesity is developed. A branched polyethylenimine (bPEI)-based system for neuron-specific protein delivery to stimulate optic nerve regeneration is also developed. The high-throughput screening methodology expedites identification of promising polymer candidates for tissue-specific protein delivery systems, thereby providing a platform to develop innovative protein-based therapeutics.

2.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893899

RESUMO

Hydrogenation-Disproportionation-Desorption-Recombination (HDDR) Nd2Fe14B particles have excellent magnetic properties, but the magnetic properties of powder are not uniform across different particle sizes. The remanence and maximum magnetic energy products of samples with a particle size of 120 µm are 14.0 kGs and 41.35 MGOe, while the products of samples with a particle size of 60 µm are only 13.3 kGs and 36.31 MGOe. The macroscopic morphology of HDDR Nd2Fe14B particles and the gradient distribution of microstructures in different micro-regions were observed. By modifying the macroscopic morphology of the particles, the poorly oriented clusters on the surface of the particles were precisely eliminated, and the remanence and maximum magnetic energy products of the particles increased to 14.5 kGs and 45 MGOe, respectively. Compared with the original particles, the samples after mechanical grinding had better grain arrangement. The effects of the nanocrystalline c-axis and field misalignment angle θ on the magnetic properties of HDDR Nd2Fe14B particles were investigated through micromagnetic simulation. The targeted removal of macroscopic defects on the particle surface contributed to a 3.6% increase in remanence and an 8.8% increase in the maximum magnetic energy product, offering a promising approach to enhance the microstructure of high-performance HDDR Nd2Fe14B particles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa