Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400103, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606697

RESUMO

Conducting polymers (CPs), a significant class of electrochemical capacitor electrode materials, exhibit exceptional capacitive energy storage performance in aqueous electrolytes. Current research primarily concentrates on enhancing the electrical conductivity and capacitive performance of CPs via molecular design and structural control. However, the absence of a comprehensive understanding of the impact of molecular chain spatial order on ion/electron transport and capacitive performance impedes the development and optimization of advanced electrode materials. Here, a solvent treatment strategy is employed to modulate the molecular chain spatial order of PEDOT : PSS films. The results of electrochemical performance tests and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) show that Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonic acid) (PEDOT : PSS) films with both face-on and edge-on orientations exhibit exceptional electronic conductivity and ion diffusion efficiency, with capacitive performance 1.33 times higher than that of PEDOT : PSS films with only edge-on orientation. Consequently, molecular chain orientations conducive to charge transport not only enhance inter-chain coupling, but also effectively reduce ion transport resistance, enabling efficient capacitive energy storage. This research provides novel insights for the design and development of higher performance CPs-based electrode materials.

2.
Pharmacology ; 104(5-6): 320-331, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31473749

RESUMO

Cerebral ischemia/reperfusion (I/R) injury causes a larger population of disable patients and deaths annually. Three Tibetan prescriptions have been applied in alleviating the I/R injury for a 1,000 years. Interestingly, ellagic acid (EA) is one of the commonly dominated phytochemicals in these 3 prescriptions. Therefore, it is noteworthy to evaluate the association between the pharmacodynamics effects of EA and I/R injury alleviation. In this study, we reveal that the EA can effectively reduce the infarction area, and prevent the neuron from apoptosis and damage in permanent middle cerebral artery occlusion rat model. The results of the histopathological study indicate that alleviation of brain damage is positively correlated with the EA dose. Further by biochemical analysis, it indicates that the EA can alleviate the brain damage by the anti-inflammatory and anti-oxidative response mediated by EA. The upregulation of zonula occludens-1 and down-regulation of Aquaporin 4 and matrix metalloprotein 9 (MMP-9) in injured brain tissues after being treated with EA suggested that the reconstruction of brain-blood-barrier (BBB), which can further prevent the brain from further injury by the other xenobiotics. In addition, EA will not activate the coagulation factors XII to induce coagulation formation during the treatment process. Therefore, EA is a promising candidate oral drug for I/R injury therapy.


Assuntos
Ácido Elágico/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/imunologia , Ácido Elágico/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Superóxido Dismutase/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38350229

RESUMO

Near-infrared organic photodetectors possess great application potential in night vision, optical communication, and image sensing, but their development is limited by the lack of narrow bandgap organic semiconductors. A-D-A'-D-A-type molecules, featuring multiple intramolecular charge transfer effects, offer a robust framework for achieving near-infrared light absorption. Herein, we report a novel A-D-A'-D-A-type narrow bandgap electron acceptor named DPPSe-4Cl, which incorporates a selenophene-flanked diketopyrrolopyrrole (Se-DPP) unit as its central A' component. This molecule demonstrates exceptional near-infrared absorption properties with an absorption onset reaching 1120 nm and a low optical bandgap of 1.11 eV, owing to the strong electron-withdrawing ability and quinoidal resonance effect induced by the Se-DPP unit. By implementing a doping compensation strategy assisted by Y6 to reduce the trap density in the photoactive layer, the optimized organic photodetector based on DPPSe-4Cl exhibited efficient spectral response and remarkable sensitivity in the range of 300-1100 nm. Particularly, a specific detectivity surpassing 1012 Jones in the wavelength range of 410-1030 nm is achieved. This work offers a promising approach for developing highly sensitive visible to near-infrared broadband photodetection technology using organic semiconductors.

4.
ACS Omega ; 5(30): 19151-19164, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775917

RESUMO

Pharmacodynamic and biodistribution effects are two important factors in drug research. As a clinical drug, the neuroprotective effects and mechanisms of hydroxysafflor yellow A (HSYA) have been widely reported but have still not been described in enough detail. In this study, we first aimed to improve the pharmacology of HSYA in nerve injury treatments. The down-regulative expression of cytokines, including NLRP3, ASC, Caspase-1, GSDMD, IL-1ß, IL-18, LDH, NF-κB, and p-p56, suggested that HSYA could both suppress pyroptosis and apoptosis pathway activation during the nerve injury. Additionally, HSYA improved the cellular viability in an oxidative stress damage cell model. Second, to further improve the therapeutic effect of the HSYA, we tried to enhance the concentration of HSYA in a lesion. The FDA-approved adenosine receptor agonist Lexiscan (Lex) could inhibit the expression of P-glycoprotein on the endothelial cell surface to transiently increase the permeability of the blood-brain barrier (BBB) without any sustained damage, which was used to assist HSYA in passing through the BBB to increase the accumulation in the brain. Furthermore, living image and distribution detection in vivo showed that the accumulation of HSYA in the brain could be significantly increased with the addition of Lex. Lastly, HSYA together with Lex (Lex-HSYA) could significantly reduce the volume of cerebral infarction, improve the histopathological morphology, and recruit brain-derived neurotrophic factors to alleviate the cerebral ischemia reperfusion injury. In conclusion, the pyroptosis pathway could act as a novel therapeutic target of HSYA in nerve injury treatment, and Lex-HSYA could be a promising candidate for nerve injury treatments.

5.
Cells ; 8(7)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323885

RESUMO

Neuroinflammation is a major cause of central nervous system (CNS) damage and can result in long-term disability and mortality. Therefore, the development of effective anti-neuroinflammatory agents for neuroprotection is vital. To our surprise, the naturally occurring molecule alantolactone (Ala) was reported to significantly inhibit tumor growth and metastasis as a result of its excellent anti-inflammatory effects. Thus, we proposed that it could also act as an anti-neuroinflammatory agent. Thus, in this study, a coculture system of BV2 cells and PC12 cells were used as an in vitro neuroinflammatory model to investigate the anti-neuroinflammatory mechanism of Ala. The results indicated that Ala downregulated the expression of proinflammatory factors by suppressing the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further evaluation using a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model supported the conclusion that Ala could (1) alleviate cerebral ischemia-reperfusion injury; (2) reduce neurological deficits, cerebral infarct volume, and brain edema; and (3) attenuate the apoptosis and necrosis of neurons. In sum, Ala demonstrates anti-neuroinflammatory properties that contribute to the amelioration of CNS damage, and it could be a promising candidate for future applications in CNS injury treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Sesquiterpenos de Eudesmano/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Lactonas/uso terapêutico , Masculino , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Ratos , Ratos Sprague-Dawley , Sesquiterpenos de Eudesmano/uso terapêutico
6.
Pharmaceutics ; 10(4)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501051

RESUMO

Oxidative stress and inflammation are important mechanisms of cerebral ischemia reperfusion (IR) injury. Luteolin (Lu), one of the major active components in the classical Tibetan prescription, which has been used in the treatment of cardiovascular diseases since 700 BC, has potential for IR injury therapy. Its hydrophobicity has impeded its further applications. In this study, we first prepared Lu micelles (M-Lu) by self-assembling with an amphiphilic copolymer via the thin film hydration method to improve the dispersion of Lu in water. The obtained M-Lu was about 30 nm, with a narrow particle size distribution, and a 5% (w/w) of Lu. The bioavailability of the micelles was further evaluated in vitro and in vivo. Compared to free Lu, M-Lu had a better penetration efficiency, which enhanced its therapeutic effect in IR injury restoration. M-Lu further strengthened the protection of nerve cells through the nuclear factor-κ-gene binding κ (NF-κB) and mitogen-activated protein kinases (MAPK) pathways and inhibited the apoptosis of cells by adjusting the expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in the case of oxidative stress damage. M-Lu induced stem cells to differentiate into neuron-like cells to promote the repair and regeneration of neurons. The results of in vivo pharmacodynamics of Lu on occlusion of the middle cerebral artery model further demonstrated that M-Lu better inhibited inflammation and the oxidative stress response by the down-regulation of the inflammatory cytokine, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, and the up-regulation of the activity of anti-oxidant kinase, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), which further ameliorated the degree of IR injury. The M-Lu could be a new strategy for IR injury therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa