Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 31(13): 1289-1301, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808065

RESUMO

The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.


Assuntos
Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Animais , Cromatina/metabolismo , DNA/química , Motivos de Nucleotídeos/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética
2.
World J Surg Oncol ; 20(1): 273, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045445

RESUMO

BACKGROUND: Previous studies have found that lncRNA polymorphisms are associated with the prognosis of gastric cancer (GC), but the specific roles of many lncRNA polymorphism sites in gastric cancer are still unclear. Our study aims to deeply explore the relationship between genetic polymorphism of lncRNA and the prognosis of GC. METHODS: The genotypes of candidate SNP locus were detected by Sequenom Mass ARRAY SNP. We deeply analyzed the association of lncRNA polymorphisms with GC prognosis by univariate and multivariate Cox regression, stratified analysis, conjoint analysis, and log-rank test. RESULTS: We found that mutations at rs2579878 and rs10036719 loci reduced the risk of poor prognosis of GC. Stratified analysis showed that rs2795025, rs10036719, and rs12516079 polymorphisms were all associated with tumor prognosis. In addition, conjoint analyses showed that the interaction between these two polymorphic sites (rs2795025 and rs12516079) could increase the risk of poor prognosis. Multivariate analysis also found that the AG/AA genotype of rs10036719 and AG genotype of rs12516079 were independent prognostic factors. Moreover, the high expression of both CCDC26 and LINC02122 were shown to be associated with the poor survival status of GC patients. CONCLUSIONS: We find that the genetic polymorphism of lncRNA plays a role in the development of GC and is closely related to the survival time of patients. It could serve as a predictor of the prognosis of GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Prognóstico , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia
3.
Genes Dev ; 28(19): 2071-6, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274724

RESUMO

The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria.


Assuntos
Evolução Biológica , Padronização Corporal/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica/genética , Animais , Humanos , Filogenia , Regiões Promotoras Genéticas/genética
4.
Genes Dev ; 28(14): 1550-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958592

RESUMO

The TCT core promoter element is present in most ribosomal protein (RP) genes in Drosophila and humans. Here we show that TBP (TATA box-binding protein)-related factor TRF2, but not TBP, is required for transcription of the TCT-dependent RP genes. In cells, TCT-dependent transcription, but not TATA-dependent transcription, increases or decreases upon overexpression or depletion of TRF2. In vitro, purified TRF2 activates TCT but not TATA promoters. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) experiments revealed the preferential localization of TRF2 at TCT versus TATA promoters. Hence, a specialized TRF2-based RNA polymerase II system functions in the synthesis of RPs and complements the RNA polymerase I and III systems.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcrição Gênica/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , Regiões Promotoras Genéticas , Transporte Proteico , TATA Box/genética , Proteína de Ligação a TATA-Box/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628489

RESUMO

Invasion is the most prominent lethal feature of malignant cancer. However, how cell proliferation, another important feature of tumor development, is integrated with tumor invasion and the subsequent cell dissemination from primary tumors is not well understood. Proliferating cell nuclear antigen (PCNA) is essential for DNA replication in cancer cells. Loss of phosphorylation at tyrosine 211 (Y211) in PCNA (pY211-PCNA) mitigates PCNA function in proliferation, triggers replication fork arrest/collapse, which in turn sets off an anti-tumor inflammatory response, and suppresses distant metastasis. Here, we show that pY211-PCNA is important in stromal activation in tumor tissues. Loss of the phosphorylation resulted in reduced expression of mesenchymal proteins as well as tumor progenitor markers, and of the ability of invasion. Spontaneous mammary tumors that developed in mice lacking Y211 phosphorylation contained fewer tumor-initiating cells compared to tumors in wild-type mice. Our study demonstrates a novel function of PCNA as an essential factor for maintaining cancer stemness through Y211 phosphorylation.


Assuntos
Invasividade Neoplásica , Neoplasias , Células-Tronco Neoplásicas , Antígeno Nuclear de Célula em Proliferação , Animais , Proliferação de Células , Replicação do DNA , Camundongos , Fosforilação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
6.
J Cell Physiol ; 236(5): 3660-3674, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33034385

RESUMO

The underlying mechanisms of complement activation in Stargardt disease type 1 (STGD1) and age-related macular degeneration (AMD) are not fully understood. Overaccumulation of all-trans-retinal (atRAL) has been proposed as the pathogenic factor in both diseases. By incubating retinal pigment epithelium (RPE) cells with atRAL, we showed that C5b-9 membrane attack complexes (MACs) were generated mainly through complement alternative pathway. An increase in complement factor B (CFB) expression as well as downregulation of complement regulatory proteins CD46, CD55, CD59, and CFH were observed in RPE cells after atRAL treatment. Furthermore, interleukin-1ß production was provoked in both atRAL-treated RPE cells and microglia/macrophages. Coincubation of RPE cells with interleukin-1 receptor antagonist (IL1Ra) and atRAL ameliorated complement activation and downregulated CFB expression by attenuating both p38 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings demonstrate that atRAL induces an autocrine/paracrine IL-1/IL-1R signaling to promote complement alternative pathway activation in RPE cells and provide a novel perspective on the pathomechanism of macular degeneration.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/farmacologia , Transdução de Sinais , Acetilcisteína/farmacologia , Animais , Células Cultivadas , Fator B do Complemento/metabolismo , Regulação para Baixo , Humanos , Interleucina-1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Ecotoxicol Environ Saf ; 225: 112725, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492628

RESUMO

Despite the wide application of cobalt nanoparticles (CoNPs), its neurotoxicity and the underlying mechanisms are not fully understood. In this study, CoNPs-induced toxic effect was examined in both C57BL/6J mice and microglial BV2 cells. CoNPs-induced brain weight loss and the reduction of Nissl bodies, assuring neural damage. Moreover, both total unphosphorylated Tau and phosphorylated Tau (pTau; T231 and S262) expressions in the hippocampus and cortex were upregulated, unveiling Tau phosphorylation. Besides, the increase in inflammation-related proteins NLRP3 and IL-1ß were found in mice brain. Corroborating that, microglial marker Iba-1 expression was also increased, suggesting microglia-involved inflammation. Among the NADPH oxidase (NOX) family proteins tested, only NOX2 was activated by CoNPs in hippocampus. Therefore, BV2 cells were employed to further investigate the role of NOX2. In BV2 cells, NOX2 expression was upregulated, corresponding to the production of ROS. Moreover, similar induction in Tau phosphorylation and inflammation-related protein expressions were observed in CoNPs-exposed BV2 cells. Treatment of apocynin, a NOX2 inhibitor, reduced ROS generation and reversed Tau phosphorylation and inflammation caused by CoNPs. Thus, CoNPs induced ROS production, Tau phosphorylation and inflammation specially via NOX2 activation.


Assuntos
Microglia , Nanopartículas , Animais , Cobalto , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
8.
Ecotoxicol Environ Saf ; 209: 111832, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383341

RESUMO

Cobalt has been known for its neurotoxicity in numerous studies. However, the molecular mechanism underlying cobalt-induced neurotoxicity remains largely unknown. In this study, two neuroblastoma (SHSY5Y and N2a) cell lines and a phaeochromocytoma (PC12) line were used as in vitro models. Cells were treated for 24 h with 50, 100, 200, 300, 400 µM cobalt chloride (CoCl2) or cultured with 300 µM CoCl2 for 4, 8, 12 and 24 h to investigate the effects of histone acetylation on CoCl2-induced neurodegenerative damages. Our findings demonstrate that CoCl2 suppresses the acetylation of histone H3 and H4 in a time-dependent and dosage-dependent manner. Furthermore, CoCl2 selectively decreases the expression and activity of histone acetyltransferase (HAT) but has no effects on histone deacetylase (HDAC) in SHSY5Y cells. More importantly, we show that 100 ng/mL HDAC inhibitor trichostatin (TSA) pre-treatment partly attenuates 300 µM CoCl2-induced neurodegenerative damages in SHSY5Y cells. Mechanistic analyses show that CoCl2-induced neurodegenerative damages are associated with the dysfunction of APP, BACE1, PSEN1, NEP and HIF-1α genes, whose expression are partly mediated by histone modification. In summary, we demonstrate that histone acetylation is involved in CoCl2-induced neurodegenerative damages. Our study indicates an important connection between histone modification and the pathological process of neurodegenerative damages and provides a mechanism for cobalt-mediated epigenetic regulation.


Assuntos
Cobalto/toxicidade , Histonas/fisiologia , Sistema Nervoso/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Cobalto/metabolismo , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Testes de Toxicidade
9.
Ecotoxicol Environ Saf ; 208: 111424, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120262

RESUMO

Emerging evidences having suggested that particular lncRNAs have a potential effect on PD progression through provoking damage and inflammatory responses of microglia/ dopaminergic cells. In addition, paraquat can be accumulated in human body through various approaches and have an increased risk for Parkinson's disease. However, the specific role and mechanism of lncRNA related to neurotoxic in the progression of PD is unclear. In our study, a mouse PD model was established induced by the intraperitoneal injection of paraquat (5 mg/kg and 10 mg/kg) every three days (10 times). We determined differential expression of lncRNA AK039862 and its potential targeted genes Pafah1b1/Foxa1 in PD mouse model, then we used fluorescence in situ hybridization (FISH) to visualize the cellular distribution of AK039862. Short interfering RNAs (siRNAs) and overexpression plasmids were designed for knockdown or overexpression of AK039862. To simulate the coexisting dopaminergic cells and microglia cells in vitro, we applied several non-contact co-culture models, including conditioned medium and Transwell co-culture systems. Cytotoxicity of PQ was evaluated using bv2 cells with the concentrations: 30, 60 µM, and mn9d cells with the concentrations: 50, 100 µM. As a result, we depicted multiple interesting individual and interactive features of inflammatory lncRNA AK039862 involved in PQ-induced cellular functional effects. First, we detected that AK039862 contributed to the neuronal injury process in PQ-treated mice and co-localization of AK039862 with dopaminergic cells in vivo. And interestingly, we demonstrated that PQ significantly inhibited microglia and dopaminergic cells proliferation and microglia migration in vitro. Further research indicated that the PQ-induced low expression of AK039862 rescued microglia proliferation and migration inhibition via the AK039862/Pafah1b1/Foxa1 pathway. Meanwhile, AK039862 also participated in the interaction between microglia and dopaminergic cells with PQ treatment in non-contact co-culture models. In summary, we found that PQ inhibited the proliferation and migration of microglial cells, and elucidated AK039862 played a key role in PQ-induced neuroinflammatory damage through Pafah1b1/Foxa1. Finally, inflammatory AK039862 is involved in the complex communication between microglia and dopaminergic cells in the environment of PQ damage.


Assuntos
Herbicidas/toxicidade , Paraquat/toxicidade , RNA Longo não Codificante/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/farmacologia , Animais , Proliferação de Células , Técnicas de Cocultura , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/farmacologia , Hibridização in Situ Fluorescente , Masculino , Camundongos , Microglia/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Síndromes Neurotóxicas/metabolismo
10.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203261

RESUMO

A group of clinically approved cancer therapeutic tyrosine kinase inhibitors was screened to test their effects on the expression of angiotensin-converting enzyme 2 (ACE2), the cell surface receptor for SARS-CoV-2. Here, we show that the receptor tyrosine kinase inhibitor imatinib (also known as STI571, Gleevec) can inhibit the expression of the endogenous ACE2 gene at both the transcript and protein levels. Treatment with imatinib resulted in inhibition of cell entry of the viral pseudoparticles (Vpps) in cell culture. In FVB mice orally fed imatinib, tissue expression of ACE2 was reduced, specifically in the lungs and renal tubules, but not in the parenchyma of other organs such as the heart and intestine. Our finding suggests that receptor tyrosine kinases play a role in COVID-19 infection and can be therapeutic targets with combined treatments of the best conventional care of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Genes Reporter , Humanos , Camundongos , Regiões Promotoras Genéticas , SARS-CoV-2/isolamento & purificação
11.
Int J Cancer ; 145(9): 2478-2487, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30963568

RESUMO

The long noncoding RNA HOTAIR plays significant roles in promoting cancer metastasis. However, how it conveys an invasive advantage in cancer cells is not clear. Here we identify the chondroitin sulfotransferase CHST15 (GalNAc4S-6ST) as a novel HOX transcript antisense intergenic RNA (HOTAIR) target gene using RNA profiling and show that CHST15 is required for HOTAIR-mediated invasiveness in breast cancer cells. CHST15 catalyzes sulfation of the C6 hydroxyl group of the N-acetyl galactosamine 4-sulfate moiety in chondroitin sulfate to form the 4,6-disulfated chondroitin sulfate variant known as the CS-E isoform. We show that HOTAIR is necessary and sufficient for CHST15 transcript expression. Inhibition of CHST15 by RNA interference abolished cell invasion promoted by HOTAIR but not on HOTAIR-mediated migratory activity. Conversely, reconstitution of CHST15 expression rescued the invasive activity of HOTAIR-depleted cells. In corroboration with this mechanism, blocking cell surface chondroitin sulfate using a pan-CS antibody or an antibody specifically recognizes the CS-E isoform significantly suppressed HOTAIR-induced invasion. Inhibition of CHST15 compromised tumorigenesis and metastasis in orthotopic breast cancer xenograft models. Furthermore, the expression of HOTAIR closely correlated with the level of CHST15 protein in primary as well as metastatic tumor lesions. Our results demonstrate a novel mechanism underlying the function of HOTAIR in tumor progression through programming the context of cell surface glycosaminoglycans. Our results further establish that the invasive and migratory activities downstream of HOTAIR are distinctly regulated, whereby CHST15 preferentially controls the arm of invasiveness. Thus, the HOTAIR-CHST15 axis may provide a new avenue toward novel therapeutic strategies and prognosis biomarkers for advanced breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/genética , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Sulfotransferases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/patologia , Interferência de RNA , RNA Interferente Pequeno/genética
12.
Biochem Biophys Res Commun ; 510(1): 42-47, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30683316

RESUMO

Epidermal growth factor receptor (EGFR) plays a significant role in promoting breast cancer progression. However, targeting EGFR as a single treatment only resulted in moderate efficacy to the disease. The underlying mechanism of low responsiveness to EGFR inhibition remains largely unclear. Tumor-secreted extracellular vesicles (EVs) play a crucial role in mediating intercellular communication between tumor and stromal cells in local microenvironment and distant metastatic niche. Extracellular vesicles mediate cell-to-cell transfer of lipids, nucleic acids, and proteins. Although numerous recent studies have demonstrated exchanges of extracellular vesicles between cancer cells and the recipient cells contribute to tumor proliferation, invasion, and metastasis, yet little is known how the exosomal compartment responds to targeted therapies and their role in promoting drug resistance. In the current study we used a triple-negative breast cancer model to show that EV-encapsulated EGFR is protected from targeted inhibitors of EGFR and can trigger signaling pathway in recipient cancer cells, promoting proliferation and migration ability in vitro. Taken together, our study suggested a novel mechanism of drug resistance entailing the EV compartment, such as exosomes, as a target shelter which when released can signal for tumor promotion in the recipient cancer cells.


Assuntos
Receptores ErbB/metabolismo , Exossomos/fisiologia , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/farmacologia , Humanos , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/patologia
13.
Ecotoxicol Environ Saf ; 169: 564-572, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30476818

RESUMO

PFOS and PFOA are two of the most abundant perfluorinated compounds (PFCs) in the environment. Previous studies have reported they have a long half-life (up to five years) once they enter into the human body. Moreover, they can potentially promote the adipogenic process by activating PPARγ. However, little is known about PFOS and PFOA chronic health impacts on humans. In this study, we employed primary human mesenchymal stem cells (hMSCs) and demonstrated that PFOS and PFOA exerted acute cytotoxicity and affected adipogenesis and osteogenesis at environmental and human relevant doses. In fact, PFOS and PFOA impaired the proper expression of CD90 (a surface antigen highly enriched in undifferentiated hMSCs) and promoted adipogenesis, presumably via their interaction with PPARγ. Moreover, PFOA partly disturbed osteogenesis. Thus, our findings not only validated the health risks of PFOS and PFOA, but also revealed new potential long-term PFOS/PFOA impacts on humans.


Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Autorrenovação Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Antígenos Thy-1/genética
14.
J Food Sci Technol ; 56(2): 811-823, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906039

RESUMO

Fermented sausages have a long tradition originating from China. In this study, three starter microorganisms including Pediococcus pentosaceus (P), Staphylococcus xylosus (S), and a combination of P. pentosaceus and S. xylosus (P + S) were conducted for the manufacture of traditional Xiangxi (a city in China) fermented sausages. The physicochemical changes of the above three kinds of sausages during fermentation were studied and discussed, and also compared with these properties on the natural fermented sausage (N, i.e., control). The results revealed that five kinds of bacterial phases were existed at different fermentation stages in N, P, S and P + S fermented sausages, respectively. The microbiological data showed that an initial enterobacteria count of approximately 5.3 log CFU/g for all four batches of sausages. The enterobacteria count in the inoculated sausages of P and P + S groups decreased significantly to about 1 log CFU/g whereas group N and S had a count of about 3.3 log CFU/g after fermentation. In the early stages of fermentation, the pH rapidly decreased below 5.3. FAA and FFA were significantly increased in all groups and TBARS value in group P was higher than that of the other three groups. In conclusion, starter cultures can be used to improve the hygiene level of Xiangxi sausages without significant effects on pH, AW, and nitrite residue.

15.
Genes Dev ; 24(18): 2013-8, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20801935

RESUMO

The TCT motif (polypyrimidine initiator) encompasses the transcription start site of nearly all ribosomal protein genes in Drosophila and mammals. The TCT motif is required for transcription of ribosomal protein gene promoters. The TCT element resembles the Inr (initiator), but is not recognized by TFIID and cannot function in lieu of an Inr. However, a single T-to-A substitution converts the TCT element into a functionally active Inr. Thus, the TCT motif is a novel transcriptional element that is distinct from the Inr. These findings reveal a specialized TCT-based transcription system that is directed toward the synthesis of ribosomal proteins.


Assuntos
RNA Polimerase II/metabolismo , Proteínas Ribossômicas/genética , Transcrição Gênica , Sequência de Bases , Dados de Sequência Molecular , Proteínas Ribossômicas/biossíntese , TATA Box , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
16.
Environ Res ; 159: 588-594, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28915506

RESUMO

The ubiquitous plasticizer, diethylhexyl phthalate (DEHP), is a known endocrine disruptor. However, DEHP exposure effects are not well understood. Changes in industrial and agricultural practices have resulted in increased prevalence of DEHP exposure and has coincided with the heightened occurrence of metabolic syndrome and obesity. DEHP and its metabolites are detected in the umbilical cord blood of newborns; however, the prenatal and perinatal effects of DEHP exposure have not been intensively studied. Previously, we discovered that phosphorylation (p) of proliferating cell nuclear antigen (PCNA) at tyrosine 114 (Y114) is required for adipogenesis and diet-induced obesity in mice. Here, we show the unique ability of DEHP to induce p-Y114 in PCNA in vitro. We also show that while DEHP promotes adipogenesis of wild type (WT) murine embryonic fibroblasts, mutation of Y114 to phenylalanine (Y114F) in PCNA blocked adipocyte differentiation. Given the induction of p-Y114 in PCNA by DEHP and the relationship to obesity, WT and Y114F PCNA mice were exposed to DEHP during gestation or lactation, followed by high fat diet feeding. Paradoxically, in utero exposure of Y114F PCNA females to DEHP led to a significant increase in body mass and was associated with augmented expression of PPARγ, a critical regulator of obesity, compared to WT controls. In utero exposure of WT mice to DEHP led to insulin sensitivity while Y114F mutation ablated this phenotype, indicating that PCNA is an important regulator of early DEHP exposure and ensuing metabolic phenotypes.


Assuntos
Adiposidade , Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Resistência à Insulina , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Adiposidade/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
17.
J Environ Sci (China) ; 36: 181-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26456621

RESUMO

The adverse effects of environmental pollution on our well-being have been intensively studied with many in vitro and in vivo systems. In our group, we focus on stem cell toxicology due to the multitude of embryonic stem cell (ESC) properties which can be exerted in toxicity assays. In fact, ESCs can differentiate in culture to mimic embryonic development in vivo, or specifically to virtually any kind of somatic cells. Here, we used the toxicant Bisphenol A (BPA), a chemical known as a hazard to infants and children, and showed that our stem cell toxicology system was able to efficiently recapitulate most of the toxic effects of BPA previously detected by in vitro system or animal tests. More precisely, we demonstrated that BPA affected the proper specification of germ layers during our in vitro mimicking of the embryonic development, as well as the establishment of neural ectoderm and neural progenitor cells.


Assuntos
Compostos Benzidrílicos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurotoxinas/toxicidade , Fenóis/toxicidade , Animais , Células Cultivadas , Camundongos , Células-Tronco Embrionárias Murinas/citologia
18.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049564

RESUMO

To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.


Assuntos
Glucose , Metabolismo dos Lipídeos , Animais , Glucose/metabolismo , Caenorhabditis elegans/metabolismo , Verrucomicrobia , Lipídeos
19.
Comput Struct Biotechnol J ; 20: 241-251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024096

RESUMO

Programmed cell death protein 1 (PD-1)/ programmed cell death protein ligand 1 (PD-L1) is the key immune checkpoint governing evasion of advanced cancer from immune surveillance. Immuno-oncology (IO) therapy targeting PD-1/PD-L1 with traditional antibodies is a promising approach to multiple cancer types but to which the response rate remains moderate in breast cancer, calling for the need of exploring alternative IO targeting approaches. A miRNA-gene network was integrated by a bioinformatics approach and corroborated with The Cancer Genome Atlas (TCGA) to screen miRNAs regulating immune checkpoint genes and associated with patient survival. Here we show the identification of a novel microRNA miR-4759 which repressed RNA expression of the PD-L1 gene. miR-4759 targeted the PD-L1 gene through two binding motifs in the 3' untranslated region (3'-UTR) of PD-L1. Reconstitution of miR-4759 inhibited PD-L1 expression and sensitized breast cancer cells to killing by immune cells. Treatment with miR-4759 suppressed tumor growth of orthotopic xenografts and promoted tumor infiltration of CD8+ T lymphocytes in immunocompetent mice. In contrast, miR-4759 had no effect to tumor growth in immunodeficient mice. In patients with breast cancer, expression of miR-4759 was preferentially downregulated in tumors compared to normal tissues and was associated with poor overall survival. Together, our results demonstrated miR-4759 as a novel non-coding RNA which promotes anti-tumor immunity of breast cancer.

20.
Front Oncol ; 12: 851795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992877

RESUMO

The cGAS-STING axis is one of the key mechanisms guarding cells from pathogen invasion in the cytoplasmic compartment. Sensing of foreign DNA in the cytosol by the cGAS-STING axis triggers a stress cascade, culminating at stimulation of the protein kinase TBK1 and subsequently activation of inflammatory response. In cancer cells, aberrant metabolism of the genomic DNA induced by the hostile milieu of tumor microenvironment or stresses brought about by cancer therapeutics are the major causes of the presence of nuclear DNA in the cytosol, which subsequently triggers a stress response. However, how the advanced tumors perceive and tolerate the potentially detrimental effects of cytosolic DNA remains unclear. Here we show that growth limitation by serum starvation activated the cGAS-STING pathway in breast cancer cells, and inhibition of cGAS-STING resulted in cell death through an autophagy-dependent mechanism. These results suggest that, instead of being subject to growth inhibition, tumors exploit the cGAS-STING axis and turn it to a survival advantage in the stressful microenvironment, providing a new therapeutic opportunity against advanced cancer. Concomitant inhibition of the cGAS-STING axis and growth factor signaling mediated by the epidermal growth factor receptor (EGFR) synergistically suppressed the development of tumor organoids derived from primary tumor tissues of triple-negative breast cancer (TNBC). The current study unveils an unexpected function of the cGAS-STING axis in promoting cancer cell survival and the potential of developing the stress-responding pathway as a therapeutic target, meanwhile highlights the substantial concerns of enhancing the pathway's activity as a means of anti-cancer treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa