RESUMO
Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.
Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Gossypium , Folhas de Planta , Proteínas de Plantas , Tricomas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Exosome therapy shows potential for cardiac repair after injury. However, intrinsic challenges such as short half-life and lack of clear targets hinder the clinical feasibility. Here, we report a noninvasive and repeatable method for exosome delivery through inhalation after myocardial infarction (MI), which we called stem cell-derived exosome nebulization therapy (SCENT). METHODS: Stem cell-derived exosomes were characterized for size distribution and surface markers. C57BL/6 mice with MI model received exosome inhalation treatment through a nebulizer for 7 consecutive days. Echocardiographies were performed to monitor cardiac function after SCENT, and histological analysis helped with the investigation of myocardial repair. Single-cell RNA sequencing of the whole heart was performed to explore the mechanism of action by SCENT. Last, the feasibility, efficacy, and general safety of SCENT were demonstrated in a swine model of MI, facilitated by 3-dimensional cardiac magnetic resonance imaging. RESULTS: Recruitment of exosomes to the ischemic heart after SCENT was detected by ex vivo IVIS imaging and fluorescence microscopy. In a mouse model of MI, SCENT ameliorated cardiac repair by improving left ventricular function, reducing fibrotic tissue, and promoting cardiomyocyte proliferation. Mechanistic studies using single-cell RNA sequencing of mouse heart after SCENT revealed a downregulation of Cd36 in endothelial cells (ECs). In an EC-Cd36fl/- conditional knockout mouse model, the inhibition of CD36, a fatty acid transporter in ECs, led to a compensatory increase in glucose utilization in the heart and higher ATP generation, which enhanced cardiac contractility. In pigs, cardiac magnetic resonance imaging showed an enhanced ejection fraction (Δ=11.66±5.12%) and fractional shortening (Δ=5.72±2.29%) at day 28 after MI by SCENT treatment compared with controls, along with reduced infarct size and thickened ventricular wall. CONCLUSIONS: In both rodent and swine models, our data proved the feasibility, efficacy, and general safety of SCENT treatment against acute MI injury, laying the groundwork for clinical investigation. Moreover, the EC-Cd36fl/- mouse model provides the first in vivo evidence showing that conditional EC-CD36 knockout can ameliorate cardiac injury. Our study introduces a noninvasive treatment option for heart disease and identifies new potential therapeutic targets.
Assuntos
Exossomos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Infarto do Miocárdio/fisiopatologia , Exossomos/metabolismo , Camundongos , Administração por Inalação , Modelos Animais de Doenças , Suínos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Função Ventricular Esquerda , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Células-Tronco/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genéticaRESUMO
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Assuntos
Descoberta de Drogas , Humanos , Nanoestruturas/química , Aprendizado de Máquina , Desenho Assistido por ComputadorRESUMO
BACKGROUND: RNA sequencing (RNA-seq) is widely used for gene expression profiling and quantification. Quantitative RNA sequencing usually requires cell counting and spike-in, which is not always applicable to many samples. Here, we present a novel quantitative RNA sequencing method independent of spike-ins or cell counting, named siqRNA-seq, which can be used to quantitatively profile gene expression by utilizing gDNA as an internal control. Single-stranded library preparation used in siqRNA-seq profiles gDNA and cDNA with equal efficiency. RESULTS: To quantify mRNA expression levels, siqRNA-seq constructs libraries for total nucleic acid to establish a model for expression quantification. Compared to Relative Quantification RNA-seq, siqRNA-seq is technically reliable and reproducible for expression profiling but also can sequence reads from gDNA which can be used as an internal reference for accurate expression quantification. Applying siqRNA-seq to investigate the effects of actinomycin D on gene expression in HEK293T cells, we show the advantages of siqRNA-seq in accurately identifying differentially expressed genes between samples with distinct global mRNA levels. Furthermore, we analyzed factors influencing the downward trend of gene expression regulated by ActD using siqRNA-seq and found that mRNA with m6A modification exhibited a faster decay rate compared to mRNA without m6A modification. Additionally, applying this technique to the quantitative analysis of seven tumor cell lines revealed a high degree of diversity in total mRNA expression among tumor cell lines. CONCLUSIONS: Collectively, siqRNA-seq is a spike-in independent quantitative RNA sequencing method, which creatively uses gDNA as an internal reference to absolutely quantify gene expression. We consider that siqRNA-seq provides a convenient and versatile method to quantitatively profile the mRNA landscape in various samples.
Assuntos
RNA Mensageiro , Análise de Sequência de RNA , Humanos , RNA Mensageiro/genética , Células HEK293 , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.
Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatias , Humanos , Camundongos , Animais , Regeneração Hepática/fisiologia , Baço , Fator de Crescimento Transformador beta/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Linear IgA bullous dermatosis (LABD) and dermatitis herpetiformis (DH) represent the major subtypes of IgA mediated autoimmune bullous disorders. We sought to understand the disease etiology by using serum proteomics. We assessed 92 organ damage biomarkers in LABD, DH, and healthy controls using the Olink high-throughput proteomics. The positive proteomic serum biomarkers were used to correlate with clinical features and HLA type. Targeted proteomic analysis of IgA deposition bullous disorders vs. controls showed elevated biomarkers. Further clustering and enrichment analyses identified distinct clusters between LABD and DH, highlighting the involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Comparative analysis revealed biomarkers with distinction between LABD and DH and validated in the skin lesion. Finally, qualitative correlation analysis with DEPs suggested six biomarkers (NBN, NCF2, CAPG, FES, BID, and PXN) have better prognosis in DH patients. These findings provide potential biomarkers to differentiate the disease subtype of IgA deposition bullous disease.
Assuntos
Biomarcadores , Dermatite Herpetiforme , Dermatose Linear Bolhosa por IgA , Proteoma , Humanos , Dermatite Herpetiforme/sangue , Dermatite Herpetiforme/diagnóstico , Dermatite Herpetiforme/imunologia , Biomarcadores/sangue , Feminino , Masculino , Adulto , Dermatose Linear Bolhosa por IgA/sangue , Dermatose Linear Bolhosa por IgA/diagnóstico , Pessoa de Meia-Idade , Diagnóstico Diferencial , Proteômica/métodos , Imunoglobulina A/sangue , Adolescente , Adulto Jovem , Idoso , CriançaRESUMO
IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.
Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Exocitose , Lisossomos , Neurônios , Animais , Camundongos , Betacoronavirus 1/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Hepatite Murina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , SARS-CoV-2/metabolismo , Suínos/virologia , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologiaRESUMO
The surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration. SHIELD's protective effect is first demonstrated in mice against two SARS-CoV-2 pseudo-viruses with different mutated spike proteins. Strikingly, in African green monkeys, a single SHIELD inhalation provides protection for up to 8 hours, efficiently reducing infection by the SARS-CoV-2 WA1 and B.1.617.2 (Delta) variants. Notably, SHIELD is made with food-grade materials and does not affect normal respiratory functions. This approach could offer additional protection to the population against SARS-CoV-2 and other respiratory pathogens.
Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Camundongos , SARS-CoV-2 , Hidrogéis , PrimatasRESUMO
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus belonging to the genus Betacoronavirus. Similar to pathogenic coronaviruses to which humans are susceptible, such as SARS-CoV-2, PHEV is transmitted primarily through respiratory droplets and close contact, entering the central nervous system (CNS) from the peripheral nerves at the site of initial infection. However, the neuroinvasion route of PHEV are poorly understood. Here, we found that BALB/c mice are susceptible to intranasal PHEV infection and showed distinct neurological manifestations. The behavioral study and histopathological examination revealed that PHEV attacks neurons in the CNS and causes significant smell and taste dysfunction in mice. By tracking neuroinvasion, we identified that PHEV invades the CNS via the olfactory nerve and trigeminal nerve located in the nasal cavity, and olfactory sensory neurons (OSNs) were susceptible to viral infection. Immunofluorescence staining and ultrastructural observations revealed that viral materials traveling along axons, suggesting axonal transport may engage in rapid viral transmission in the CNS. Moreover, viral replication in the olfactory system and CNS is associated with inflammatory and immune responses, tissue disorganization and dysfunction. Overall, we proposed that PHEV may serve as a potential prototype for elucidating the pathogenesis of coronavirus-associated neurological complications and olfactory and taste disorders.
Assuntos
Betacoronavirus 1 , COVID-19 , Infecções por Coronavirus/patologia , Transtornos do Olfato , Animais , Betacoronavirus 1/fisiologia , Humanos , Camundongos , Transtornos do Olfato/virologia , SARS-CoV-2 , Olfato , SuínosRESUMO
BACKGROUND: Mesenchymal stem/stromal cells (MSCs) have been acknowledged as the most important stromal cells in the bone marrow (BM) microenvironment for physiologic hematopoiesis and the concomitant hematologic malignancies. However, the systematic and detailed dissection of the biological and transcriptomic signatures of BM-MSCs in multiple myeloma (MM) are largely unknown. METHODS: In this study, we isolated and identified BM-MSCs from 10 primary MM patients and 10 healthy donors (HD). On the one hand, we compared the multifaceted biological characteristics of the indicated two BM-MSCs, including biomarker expression pattern, multilineage differentiation potential, stemness and karyotyping, together with the cellular vitality and immunosuppressive property. On the other hand, we took advantage of RNA-SEQ and bioinformatics analysis to verify the similarities and differences at the transcriptomic level between MM-MSCs and HD-MSCs. RESULTS: As to biological phenotypes and biofunctions, MM-MSCs revealed conservation in immunophenotype, stemness and differentiation towards adipocytes and chondrocytes with HD-MSCs, whereas with impaired osteogenic differentiation potential, cellular vitality and immunosuppressive property. As to transcriptomic properties, MM-MSCs revealed multidimensional alterations in gene expression profiling and genetic variations. CONCLUSIONS: Overall, our date systematic and detailed reflected the multifaceted similarities and variations between MM-MSCs and HD-MSCs both at the cellular and molecular levels, and in particular, the alterations of immunomodulation and cellular viability of MM-MSCs, which wound benefit the further exploration of the pathogenesis and new drug application (NDA) of multiple myeloma from the view of BM-MSCs.
RESUMO
We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses. Accordingly, the incident angle-resolved DCSs of returning electrons for spherically symmetric targets (Xe^{+} and Ar^{+}) were successfully extracted as a proof-of-principle for ELIED. The MFDCSs for N_{2}^{+} were experimentally obtained at incident angles of 4° and 7°, which were well reproduced by the simulations. The ELIED approach is the only successful method so far for obtaining incident angle-resolved ionic MFDCS, which provides a new sensitive observable for the transient structure retrieval of N_{2}^{+}. Our results suggest that the ELIED has the potential to extract the structural tomographic information of polyatomic molecules with femtosecond and subangstrom spatiotemporal resolutions that can enable the visualization of the nuclear motions in complex chemical reactions as well as chiral recognition.
RESUMO
To tackle the global energy scarcity and environmental degradation, developing efficient electrocatalysts is essential for achieving sustainable hydrogen production via water splitting. Modulating the d-band center of transition metal electrocatalysts is an effective approach to regulate the adsorption energy of intermediates, alter reaction pathways, lower the energy barrier of the rate-determining step, and ultimately improve electrocatalytic water splitting performance. In this review, a comprehensive overview of the recent advancements in modulating the d-band center for enhanced electrocatalytic water splitting is offered. Initially, the basics of the d-band theory are discussed. Subsequently, recent modulation strategies that aim to boost electrocatalytic activity, with particular emphasis on the d-band center as a key indicator in water splitting are summarized. Lastly, the importance of regulating electrocatalytic activity through d-band center, along with the challenges and prospects for improving electrocatalytic water splitting performance by fine-tuning the transition metal d-band center, are provided.
RESUMO
BACKGROUND: Mesenchymal stem cell (MSC)-derived exosomes are well recognized immunomodulating agents for cardiac repair, while the detailed mechanisms remain elusive. The Pericardial drainage pathway provides the heart with immunosurveillance and establishes a simplified model for studying the mechanisms underlying the immunomodulating effects of therapeutic exosomes. METHODS: Myocardial infarction (MI) models with and without pericardiectomy (corresponding to Tomy MI and NonTomy MI) were established to study the functions of pericardial drainage pathway in immune activation of cardiac-draining mediastinal lymph node (MLN). Using the NonTomy MI model, MSC exosomes or vehicle PBS was intrapericardially injected for MI treatment. Via cell sorting and RNA-seq (RNA-sequencing) analysis, the differentially expressed genes were acquired for integrated pathway analysis to identify responsible mechanisms. Further, through functional knockdown/inhibition studies, application of cytokines and neutralizing antibodies, western blot, flow cytometry, and cytokine array, the molecular mechanisms were studied. In addition, the therapeutic efficacy of intrapericardially injected exosomes for MI treatment was evaluated through functional and histological analyses. RESULTS: We show that the pericardial draining pathway promoted immune activation in the MLN following MI. Intrapericardially injected exosomes accumulated in the MLN and induced regulatory T cell differentiation to promote cardiac repair. Mechanistically, uptake of exosomes by major histocompatibility complex (MHC)-II+ antigen-presenting cells (APCs) induced Foxo3 activation via the protein phosphatase (PP)-2A/p-Akt/forkhead box O3 (Foxo3) pathway. Foxo3 dominated APC cytokines (IL-10, IL-33, and IL-34) expression and built up a regulatory T cell (Treg)-inducing niche in the MLN. The differentiation of Tregs as well as their cardiac deployment were elevated, which contributed to cardiac inflammation resolution and cardiac repair. CONCLUSIONS: This study reveals a novel mechanism underlying the immunomodulation effects of MSC exosomes and provides a promising candidate (PP2A/p-Akt/Foxo3 signaling pathway) with a favorable delivery route (intrapericardial injection) for cardiac repair.
Assuntos
Exossomos , Traumatismos Cardíacos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Exossomos/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Traumatismos Cardíacos/metabolismoRESUMO
BACKGROUND: Tuberculosis (TB) remains a global public health event of great concern, however epidemic data on TB covering entire areas during the special period of the COVID-19 epidemic have rarely been reported. We compared the dissemination and multidrug-resistance patterns of Mycobacterium tuberculosis complex (MTBC) in the main urban area of Luoyang City, China (including six municipal jurisdictions) and nine county and township areas under its jurisdiction, aimed to establish the epidemiology of TB in this region and to provide reference for precision anti-TB in places with similar settings. METHODS: From 2020 to 2022, sputum samples were collected from 18,504 patients with confirmed, suspected and unexcluded TB in 10 designated TB medical institutions. Insertion sequence 6110 was amplified by PCR (rpoB gene detection if necessary) to confirm the presence of MTBC. PCR-positive specimens were analyzed by multicolor melting curve analysis to detect multidrug resistance. RESULTS: Among the 18,504 specimens, 2675 (14.5%) were MTBC positive. The positive rate was higher in the main urban area than in the county and township areas (29.8% vs. 10.9%, p < 0.001). Male, re-treated and smear-positive groups were high-burden carriers of MTBC. Individuals aged > 60 years were the largest group infected with MTBC in the main urban area, compared with individuals aged < 61 years in the county and township areas. The detection of multidrug-resistant TB (MDR-TB) was higher in the main urban area than in the county and township areas (13.9% vs. 7.8%, p < 0.001). In all areas, MDR-TB groups were dominated by males, patients with a history of TB treatment, and patients aged < 61 years. Stratified analysis of MDR-TB epidemiology showed that MDR4 (INH þ RIF þ EMB þ SM) was predominant in the main urban area, while MDR3 (INH þ RIF þ SM) was predominant in the county and township areas. MDR-TB detection rate and epidemiology differed among the county and township areas. CONCLUSIONS: For local TB control, it is necessary to plan more appropriate and accurate prevention and control strategies according to the regional distribution of MTBC infection.
Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Adulto , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , COVID-19/epidemiologia , Idoso , Adolescente , Adulto Jovem , Farmacorresistência Bacteriana Múltipla/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Criança , Escarro/microbiologia , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Pré-Escolar , Idoso de 80 Anos ou mais , Lactente , EpidemiasRESUMO
A new dicyanoisophorone-based ratiometric fluorescent probe NOSA was synthesized and characterized. It showed a fast fluorescence response to HClO with the emission color change from dark green to bright red. NMR, IR, and HRMS suggested that the detection of NOSA to HClO may originate from the hydroxyl deprotection reaction by HClO on the molecule NOSA, which caused a red-shift of fluorescence. The probe NOSA displayed high selectivity and excellent anti-interference performance with a limit of detection at 3.835 × 10-7 M. The convenient paper test strips were successfully obtained and applied to the detection of HClO based on fluorescence color change with the varied NaClO concentration. Moreover, spiked recovery experiments in real water samples indicated that the probe NSOA could quantitatively detect HClO, and the fluorescence bio-imagings in vivo were carried out, and HClO detection in biosystems using NOSA was realized.
RESUMO
Additive manufacturing of transition metal sulfides (TMS) enables the creation of complex 3D structures, significantly expanding their applications. However, preparing 3D-structured TMS remains challenging due to difficulties in developing suitable inks. In this study, a supramolecular micelle hydrogel as the ink to fabricate 3D-structured TMS is utilized. Initially, the hydrogels are printed and infused with metal salt solutions to stabilize the structures, which are then calcined to convert into miniaturized 3D-TMS replicas. The micellar hydrogels crosslink via hydrophobic interactions, with sodium dodecyl sulfonate (SDS) micelles providing both a hydrophobic environment and sulfur sources. During calcination, the decomposed sulfur precursors coordinate with metal ions to form various TMS, including FeS2, Cu2S, Ni3S2, and Co9S8, along with several metal sulfides like PbS and SnS. Additionally, the method also allows for the preparation of transition metal dichalcogenides such as MoS2 and WS2. The formation mechanism is demonstrated using Ni3S2 as an example which exhibits notable catalytic activity in oxygen evolution reactions (OER) and hydrogen evolution reactions (HER). Given its simplicity and versatility, this dynamic micellar hydrogel-derived strategy offers a promising pathway for creating advanced TMS materials.
RESUMO
BACKGROUND: Klotho plays a pivotal role in human aging. Metabolic syndrome (MetS) is composed of multiple conditions that are also risk factors for cardiovascular disease and diabetes. We try to discuss gender-specific differences in Klotho and the associations between Klotho and MetS components. MATERIALS AND METHODS: The National Health and Nutrition Examination Survey database from cycle 2015-2016 was analyzed. MetS was defined according to the 2005 updated criteria by the American Heart Association and National Heart Lung and Blood Institute. Gender-specific differences in serum Klotho, and associations between Klotho level and MetS components were examined. RESULTS: A total of 2475 participants (40-79 years old) with comprehensive data were included (52% women). In general, lower Klotho was associated with advanced age, male sex, tobacco use, elevated triglycerides, renal insufficiency, inflammation, low estradiol, and low sex hormone-binding globulin (SHBG). The correlation between MetS and Klotho was more obvious in women, mainly in waist circumference and triglyceride. There were no gender-specific differences in the associations between Klotho and renal dysfunction, but multivariate linear regression analysis showed gender differences in other factors associated with Klotho. Estradiol, SHBG, high-density lipoprotein cholesterol (HDL), and high-sensitivity C-reactive protein (CRP) were associated with Klotho levels independent of age and renal function in men, whereas in women, Klotho was independently associated with triglycerides and white blood cell count. CONCLUSION: Klotho levels had gender disparities regardless of age, renal function, and sex hormones. In the current cohort, triglycerides were the major component of MetS that was independently associated with serum Klotho levels, and the association was particularly seen in women. However, HDL was found to be the male-specific MetS component independently associated with Klotho.
Assuntos
Proteínas Klotho , Síndrome Metabólica , Inquéritos Nutricionais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Fatores Sexuais , Glucuronidase/sangue , Biomarcadores/sangue , Estudos Transversais , Fatores de Risco , Triglicerídeos/sangueRESUMO
Carboxylesterase 1 (CES1), a member of the serine hydrolase superfamily, is involved in a wide range of xenobiotic and endogenous substances metabolic reactions in mammals. The inhibition of CES1 could not only alter the metabolism and disposition of related drugs, but also be benefit for treatment of metabolic disorders, such as obesity and fatty liver disease. In the present study, we aim to develop potential inhibitors of CES1 and reveal the preferred inhibitor structure from a series of synthetic pyrazolones (compounds 1-27). By in vitro high-throughput screening method, we found compounds 25 and 27 had non-competitive inhibition on CES1-mediated N-alkylated d-luciferin methyl ester (NLMe) hydrolysis, while compound 26 competitively inhibited CES1-mediated NLMe hydrolysis. Additionally, Compounds 25, 26 and 27 can inhibit CES1-mediated fluorescent probe hydrolysis in live HepG2 cells with effect. Besides, compounds 25, 26 and 27 could effectively inhibit the accumulation of lipid droplets in mouse adipocytes cells. These data not only provided study basis for the design of newly CES1 inhibitors. The present study not only provided the basis for the development of lead compounds for novel CES1 inhibitors with better performance, but also offered a new direction for the explore of candidate compounds for the treatment of hyperlipidemia and related diseases.
Assuntos
Adipócitos , Hidrolases de Éster Carboxílico , Inibidores Enzimáticos , Pirazolonas , Humanos , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/citologia , Animais , Camundongos , Pirazolonas/farmacologia , Pirazolonas/química , Pirazolonas/síntese química , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Células Hep G2 , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células 3T3-L1RESUMO
Aseptic pustulosis involves inflammatory skin conditions with nonbacterial pustules on erythema, accompanied by neutrophil and eosinophil infiltration in the epidermis. Dysregulation of the interleukin (IL)-36 pathway leads to neutrophil aggregation and pustule formation. Variants in IL36RN, CARD14, AP1S3, MPO, SERPINA3 and BTN3A3 have been identified in generalized pustular psoriasis (GPP) in the past. Some patients with acrodermatitis continua of Hallopeau (ACH), palmoplantar pustulosis and acute generalized exanthematous pustulosis (AGEP) also exhibit mutations in IL36RN, CARD14 and AP1S3, albeit with regional and population-specific variations. This study aims to explore a shared genetic foundation among those with aseptic pustulosis. We performed Sanger sequencing on six genes in 126 patients with aseptic pustulosis. Genetic analysis identified IL36RN variants strongly associated with ACH, AGEP and subcorneal pustular dermatosis (SPD). Immunohistochemistry revealed elevated inflammatory cytokines in all subtypes. This study establishes a significant association between IL36RN variants and ACH, AGEP and SPD, emphasizing the IL-1/IL-36-chemokine-neutrophil axis as a common pathogenic mechanism. Targeting this axis holds promise for therapeutic interventions for aseptic pustulosis.
Assuntos
Povo Asiático , Proteínas Adaptadoras de Sinalização CARD , Interleucinas , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Masculino , Feminino , Interleucinas/genética , China , Adulto , Povo Asiático/genética , Pessoa de Meia-Idade , Pustulose Exantematosa Aguda Generalizada/genética , Pustulose Exantematosa Aguda Generalizada/patologia , Guanilato Ciclase/genética , Dermatopatias Vesiculobolhosas/genética , Dermatopatias Vesiculobolhosas/patologia , Proteínas de Membrana/genética , Psoríase/genética , Psoríase/patologia , Mutação , Acrodermatite/genética , Acrodermatite/patologia , Adulto Jovem , Idoso , Adolescente , Peroxidase/genética , Testes Genéticos , População do Leste Asiático , Proteínas de Transporte VesicularRESUMO
Blood composition is indicative of health-related traits such as immunity and metabolism. The use of molecular genetics to investigate alterations in these attributes in laying ducks is a novel approach. Our objective was to employ genome - wide association studies (GWAS) and haplotype - sharing analysis to identify genomic regions and potential genes associated with 11 blood components in Shaoxing ducks. Our findings revealed 35 SNPs and 1 SNP associated with low-density lipoprotein cholesterol (LDL) and globulin (GLB), respectively. We identified 36 putative candidate genes for the LDL trait in close proximity to major QTLs and key loci. Based on their biochemical and physiological properties, TRA2A, NPY, ARHGEF26, DHX36, and AADAC are the strongest putative candidate genes. Through linkage disequilibrium analysis and haplotype sharing analysis, we identified three haplotypes and one haplotype, respectively, that were significantly linked with LDL and GLB. These haplotypes could be selected as potential candidate haplotypes for molecular breeding of Shaoxing ducks. Additionally, we utilized a bootstrap test to verify the reliability of GWAS with small experimental samples. The test can be accessed at https://github.com/xuwenwu24/Bootstrap-test.