Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 119: 103781, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232473

RESUMO

Ice slurry ingestion during prolonged exercises may improve performance in hot environments; however, the ideal amount and timing of ingestion are still uncertain. We determined whether ad libitum ice slurry ingestion influences physiological and perceptual variables and half-marathon performance while comparing the effects of the amount and moment of ingestion between ice slurry and water at 37 °C. Ten trained participants (28 ± 2 years; mean and SD) were required to run two half marathons while consuming either ice slurry (-1 °C; Ad-1) or water (37 °C; 37 CE) ad libitum. They then performed two other half marathons where, during one, they were required to ingest an amount of water equivalent to the amount consumed during the Ad-1 trial (Pro37), and in the other, to ingest ice slurry in the amount consumed during the 37 CE trial (Pro-1). During the half marathons, dry-bulb temperature and relative humidity were controlled at 33.1 ± 0.3 °C and 60 ± 3%, respectively. Ad-1 ingestion (349.6 ± 58.5 g) was 45% less than 37 CE ingestion (635.5 ± 135.8 g). Physical performance, heart rate, perceived exertion, body temperatures, and thermal perception were not influenced by the temperature or amount of beverage ingestion. However, a secondary analysis suggested that lower beverage ingestion was associated with improved performance (Ad-1 + Pro37 vs. 37 CE + Pro-1: -4.0 min, Cohen's d = 0.39), with a significant relationship between lower beverage ingestion and faster running time (b = 0.02, t = 4.01, p < 0.001). In conclusion, ice slurry ingestion does not affect performance or physiological or perceptual variables during a half marathon in a hot environment. Preliminary evidence suggests that lower beverage ingestion (ice slurry or warm water) is associated with improved performance compared to higher ingestion.


Assuntos
Temperatura Corporal , Água , Humanos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Gelo , Corrida de Maratona , Temperatura Alta , Ingestão de Alimentos
2.
Exp Physiol ; 108(6): 852-864, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018484

RESUMO

NEW FINDINGS: What is the central question of this study? The aim was to identify the factors predicting the body core temperature of athletes at the end of a 10 km self-paced run in a hot environment. What is the main finding and its importance? Hyperthermia in athletes subjected to self-paced running depends on several factors, highlighting the integrated control of core temperature during exercise under environmental heat stress. Five of the seven variables that significantly predicted core temperature are not invasive and, therefore, practical for use outside the laboratory environment: heart rate, sweat rate, wet-bulb globe temperature, running speed and maximal oxygen consumption. ABSTRACT: Measurement of body core temperature (Tcore ) is paramount to determining the thermoregulatory strain of athletes. However, standard measurement procedures of Tcore are not practical for extended use outside the laboratory environment. Therefore, determining the factors that predict Tcore during a self-paced run is crucial for creating more effective strategies to minimize the heat-induced impairment of endurance performance and reduce the occurrence of exertional heatstroke. The aim of this study was to identify the factors predicting Tcore values attained at the end of a 10 km time trial (end-Tcore ) under environmental heat stress. Initially, we extracted data obtained from 75 recordings of recreationally trained men and women. Next, we ran hierarchical multiple linear regression analyses to understand the predictive power of the following variables: wet-bulb globe temperature, average running speed, initial Tcore , body mass, differences between Tcore and skin temperature (Tskin ), sweat rate, maximal oxygen uptake, heart rate and change in body mass. Our data indicated that Tcore increased continuously during exercise, attaining 39.6 ± 0.5°C (mean ± SD) after 53.9 ± 7.5 min of treadmill running. This end-Tcore value was primarily predicted by heart rate, sweat rate, differences between Tcore and Tskin , wet-bulb globe temperature, initial Tcore , running speed and maximal oxygen uptake, in this order of importance (ß power values corresponded to 0.462, -0.395, 0.393, 0.327, 0.277, 0.244 and 0.228, respectively). In conclusion, several factors predict Tcore in athletes subjected to self-paced running under environmental heat stress. Moreover, considering the conditions investigated, heart rate and sweat rate, two practical (non-invasive) variables, have the highest predictive power.


Assuntos
Transtornos de Estresse por Calor , Corrida , Masculino , Humanos , Feminino , Temperatura Corporal/fisiologia , Temperatura , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia , Corrida/fisiologia , Resposta ao Choque Térmico/fisiologia , Oxigênio
3.
Eur J Appl Physiol ; 123(1): 49-64, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152058

RESUMO

PURPOSE: This study investigated the effects of both an active warm-up and the time-of-day variation on repeated-sprint performance. A second objective was to compare the post-exercise recovery between the experimental conditions. METHODS: Eleven male participants performed ten maximal cycling sprints (6 s each, with a 30-s interval between them) in the morning and late afternoon, either after a warm-up or control condition. The warm-up consisted of cycling for 10 min at 50% of the peak aerobic power. RESULTS: Rest measurements of rectal, muscle, and skin temperatures were higher in the afternoon compared to the morning (p < 0.05), with no significant differences in heart rate (p = 0.079) and blood lactate concentration (p = 0.300). Warm-up increased muscle temperature, heart rate, and lactate, and reduced skin temperature (all p < 0.001), though no significant differences were observed for rectal temperature (p = 0.410). The number of revolutions (p = 0.034, ηp2 = 0.375), peak (p = 0.034, ηp2 = 0.375), and mean (p = 0.037, ηp2 = 0.365) power of the first sprint (not the average of ten sprints) were higher in the afternoon compared to the morning, regardless of warm-up. However, beneficial performance effects of warming up were evident for the first (p < 0.001) and the average of ten sprints (p < 0.05), regardless of time of day. More remarkable changes during the 60-min post-exercise were observed for rectal temperature (p = 0.005) and heart rate (p = 0.010) in the afternoon than in the morning. CONCLUSION: Warming-up and time-of-day effects in enhancing muscular power are independent. Although warm-up ensured further beneficial effects on performance than the time-of-day variation, a faster post-exercise recovery was observed in the late afternoon.


Assuntos
Desempenho Atlético , Exercício de Aquecimento , Humanos , Masculino , Teste de Esforço , Tempo , Músculo Esquelético/fisiologia , Ácido Láctico
4.
Int J Biometeorol ; 67(5): 761-775, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36935415

RESUMO

Understanding the factors that underlie the physical exercise-induced increase in body core temperature (TCORE) is essential to developing strategies to counteract hyperthermic fatigue and reduce the risk of exertional heatstroke. This study analyzed the contribution of six factors to TCORE attained at fatigue in Wistar rats (n = 218) subjected to incremental-speed treadmill running: ambient temperature (TAMB), distance traveled, initial TCORE, body mass, measurement site, and heat loss index (HLI). First, we ran hierarchical multiple linear regression analyses with data from different studies conducted in our laboratory (n = 353 recordings). We observed that TAMB, distance traveled, initial TCORE, and measurement site were the variables with predictive power. Next, regression analyses were conducted with data for each of the following TCORE indices: abdominal (TABD), brain cortex (TBRAIN), or colonic (TCOL) temperature. Our findings indicated that TAMB, distance traveled (i.e., an exercise performance-related variable), initial TCORE, and HLI predicted the three TCORE indices at fatigue. Most intriguingly, HLI was inversely related to TABD and TBRAIN but positively associated with TCOL. Lastly, we compared the temperature values at fatigue among these TCORE indices, and the following descendent order was noticed - TCOL, TABD, and TBRAIN - irrespective of TAMB where experiments were conducted. In conclusion, TCORE in rats exercised to fatigue depends primarily on environmental conditions, performance, pre-exercise TCORE, and measurement site. Moreover, the influence of cutaneous heat loss on TCOL is qualitatively different from the influence on TABD and TBRAIN, and the temperature values at fatigue are not homogenous within the body core.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Ratos , Animais , Temperatura , Ratos Wistar , Fadiga
5.
J Therm Biol ; 114: 103514, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344011

RESUMO

PURPOSE: TRPV1 desensitization or blockade promotes hyperthermia in rodents. Daily changes in core body temperature (Tc), spontaneous locomotor activity (SLA), and glucocorticoids are temporal cues for peripheral clocks. Thus, this study aimed to evaluate the effects of both desensitization and blockade of TRPV1 on Tc, SLA, blood corticosterone, and the clock genes Per1 and Bmal1 in the liver and adrenal. METHODS AND RESULTS: Resiniferatoxin (RTX, 20 µg kg-1) known to desensitize the intra-abdominal TRPV1 channels was i. p. administered in adult male rats. One day after, RTX rats displayed higher Tc than vehicle rats (control) in the light and dark phases. RTX rats showed higher corticosterone at zeitgeber time (ZT) 6 and ZT12 compared to ZT0. Control rats showed a rise in corticosterone at ZT12. RTX abolished the Per1 peak in both the liver and adrenal glands, whereas it enhanced the peak of Bmal1 expression in the liver and decreased it in adrenal glands. Circadian variation in Tc and SLA was unaffected despite higher Tc being found along the light phase up to 5 days after RTX injection. Acute blockade of TRPV1 with the antagonist AMG-517 injected at ZT0 increased Tc and reduced corticosterone without affecting SLA. In the liver, while AMG-517 did not affect Per1, it increased Bmal1 mRNA. In adrenal glands, AMG-517 increased Per1 and did not affect Bmal1 expression. Although rats exposed to a 60-min 34 °C environment showed similar hyperthermia to that observed in AMG-517 rats, neither corticosterone nor liver nor adrenal clock genes changed. CONCLUSIONS: Inactivation of TRPV1 by abdominal desensitization or by antagonism alters the time-of-day changes of clock genes expression in the liver and adrenal, as well as corticosterone. TRPV1 may be necessary for signaling cyclical temporal cues for clock genes in the periphery but less critical for the circadian profile of Tc and SLA.


Assuntos
Fatores de Transcrição ARNTL , Corticosterona , Animais , Masculino , Ratos , Glândulas Suprarrenais/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Temperatura Corporal , Ritmo Circadiano/fisiologia , Fígado/metabolismo
6.
An Acad Bras Cienc ; 94(suppl 1): e20210501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35648992

RESUMO

Open-water diving in a polar environment is a psychophysiological challenge to the human organism. We evaluated the effect of short-term diving (i.e., 10 min) in Antarctic waters on autonomic cardiac control, thyroid hormone concentration, body temperatures, mood, and neuropsychological responses (working memory and sleepiness). Data collection was carried out at baseline, before, and after diving in four individuals divided into the supporting (n=2) and diving (n=2) groups. In the latter group, autonomic cardiac control (by measuring heart rate variability) was also assessed during diving. Diving decreased thyroid-stimulating hormone (effect size = 1.6) and thyroxine (effect size = 2.1) concentrations; these responses were not observed for the supporting group. Diving also reduced both the parasympathetic (effect size = 2.6) and sympathetic activities to the heart (ES > 3.0). Besides, diving reduced auricular (effect size > 3.0), skin [i.e., hand (effect size = 1.2) and face (effect size = 1.5)] temperatures compared to pre-dive and reduced sleepiness state (effect size = 1.3) compared to basal, without changing performance in the working memory test. In conclusion, short-term diving in icy waters affects the hypothalamic-pituitary-thyroid axis, modulates autonomic cardiac control, and reduces body temperature, which seems to decrease sleepiness.


Assuntos
Mergulho , Regiões Antárticas , Brasil , Mergulho/fisiologia , Congelamento , Frequência Cardíaca/fisiologia , Humanos , Sonolência , Hormônios Tireóideos
7.
An Acad Bras Cienc ; 94(suppl 1): e20210593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239799

RESUMO

We evaluated the influence of a 32-day camping in Antarctica on physical performance and exercise-induced thermoregulatory responses. In Brazil, before and after the Antarctic camping, the volunteers performed an incremental exercise at temperate conditions and, two days later, an exercise heat stress protocol (45-min running at 60% of maximum aerobic speed, at 31°C and 60% of relative humidity). In Antarctica, core temperature was assessed on a day of fieldwork, and average values higher than 38.5°C were reported. At pre- and post-Antarctica, physiological (whole-body and local sweat rate, number of active sweat glands, sweat gland output, core and skin temperatures) and perceptual (thermal comfort and sensation) variables were measured. The Antarctic camping improved the participants' performance and induced heat-related adaptations, as evidenced by sweat redistribution (lower in the chest but higher in grouped data from the forehead, forearm, and thigh) and reduced skin temperatures in the forehead and chest during the exercise heat stress protocol. Notwithstanding the acclimatization, the participants did not report differences of the thermal sensation and comfort. In conclusion, staying in an Antarctic camp for 32 days improved physical performance and elicited physiological adaptations to heat due to the physical exertion-induced hyperthermia in the field.


Assuntos
Termotolerância , Aclimatação/fisiologia , Regiões Antárticas , Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Temperatura Alta , Humanos
8.
Int J Sport Nutr Exerc Metab ; 32(2): 89-101, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808598

RESUMO

We aimed to investigate the combined effects of aerobic exercise (EXE) and cocoa flavanol (COCOA) supplementation on performance, metabolic parameters, and inflammatory and lipid profiles in obese insulin-resistant rats. Therefore, 32 male Wistar rats (230-250 g) were fed a high-fat diet and a fructose-rich beverage for 30 days to induce insulin resistance. Next, the rats were randomized into four groups, orally administered placebo solution or COCOA supplementation (45 mg·kg-1), and either remained sedentary or were subjected to EXE on a treadmill at 60% peak velocity for 30 min, for 8 weeks. Blood samples and peripheral tissues were collected and processed to analyze metabolic and inflammatory parameters, lipid profiles, and morphological parameters. Supplementation with COCOA and EXE improved physical performance and attenuated body mass gain, adipose index, and adipocyte area. When analyzed as individual interventions, supplementation with COCOA and EXE improved glucose intolerance and the lipid profile reduced the concentrations of leptin, glucose, and insulin, and reduced homeostasis assessment index (all effects were p < .001 for both interventions), while ameliorated some inflammatory mediators in examined tissues. In skeletal muscles, both COCOA supplementation and EXE increased the expression of glucose transporter (p < .001 and p < .001), and combined intervention showed additive effects (p < .001 vs. COCOA alone or EXE alone). Thus, combining COCOA with EXE represents an effective nonpharmacological strategy to treat insulin resistance; it could prevent Type 2 diabetes mellitus by improving physical performance, glucose metabolism, neuroendocrine control, and lipid and inflammatory mediators in the liver, pancreas, adipose tissue, and skeletal muscle in obese male insulin-resistant rats.


Assuntos
Cacau , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Feminino , Masculino , Ratos , Cacau/metabolismo , Mediadores da Inflamação , Insulina , Lipídeos , Obesidade/terapia , Ratos Wistar
9.
J Therm Biol ; 106: 103191, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35636879

RESUMO

Anxiety resulting from psychogenic stimuli elicit stress-induced hyperthermia in rats, often called "psychogenic fever", which is part of a coordinated response to situations seen as novel or distressing. Brain transient receptor potential vanilloid 1 (TRPV1) channels modulate both thermoregulation and animal behavior; however, the role of peripheral TRPV1 channels in regulating these responses during exposure to an anxiogenic environment has not been determined. Thus, the present study aimed to investigate the involvement of abdominal TRPV1 channels in stress-induced hyperthermia and behavior in rats subjected to an unconditioned anxiety test. Desensitized rats (peripheral desensitization of TRPV1 channels with resiniferatoxin; RTX) and their respective controls were subjected to a 15-min open field (OF) test. The core body temperature (Tcore), tail skin temperature (Tskin), and rats' movements inside the arena were recorded. The OF test induced a similar increase in Tcore in both groups throughout the exposure time; however, at the recovery period, the RTX-treated rats had a slower reduction in Tcore due to lower tail skin heat loss. Tskin decreased significantly in both groups during exposure to OF but, during recovery, the RTX-treated rats showed impaired skin vasodilation. Also, RTX-treated rats entered fewer times and spent less time in the OF center square, suggesting an anxiety-related behavior. Our findings indicate that, under stressful conditions, peripheral TRPV1 channels modulate thermoregulatory and behavioral responses. The TRPV1 desensitization induces a more prolonged hyperthermic response due to lower cutaneous heat dissipation, alongside a more evident anxiety-like behavior in rats subjected to the OF apparatus.


Assuntos
Hipertermia Induzida , Canais de Potencial de Receptor Transitório , Animais , Regulação da Temperatura Corporal/fisiologia , Ratos , Canais de Cátion TRPV/fisiologia
10.
J Therm Biol ; 108: 103270, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36031225

RESUMO

Thermoregulatory changes may influence the rats' prolonged physical performance and are commonly evaluated during treadmill running. Therefore, we determined the reliability of performance and thermoregulatory parameters in rats subjected to incremental-speed exercises (i.e., we assessed whether the testing protocol provides measurements that are consistent and free from error). Twenty rats were subjected to two sessions of incremental exercises at 24 °C, separated by 48 h, until they were fatigued. The rats' performance and thermoregulatory responses were determined, and values concerning the reliability of these parameters [e.g., intraclass correlation coefficient (ICC) and minimal detectable change (MDC)] were calculated. Our data revealed that the core temperature (TCORE) at fatigue and heat loss threshold were the most reproducible parameters, showing good reliability (ICC between 0.75 and 0.90). Moreover, all performance parameters assessed, the change in TCORE, the rate of TCORE increase, and the TCORE increase-to-distance traveled ratio presented moderate reliability. We then investigated whether changes in performance and thermoregulation induced by a warm environment were greater than the MDC95% values determined in the first experiment. Eight rats were subjected to incremental exercises at two environmental conditions: 24 °C and 31 °C. Individual analyses showed that most rats presented thermoregulatory differences between exercises at 31 °C and 24 °C greater than the calculated MDC95% values; this was not the case for their performance. In conclusion, we provide data on the reliability of rats' performance and thermoregulatory parameters during incremental-speed running. Also, the exercise in a warm environment produced detectable thermoregulatory changes relative to the exercise under temperate conditions.


Assuntos
Regulação da Temperatura Corporal , Corrida , Animais , Fadiga , Desempenho Físico Funcional , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
11.
J Strength Cond Res ; 36(2): 461-468, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855926

RESUMO

ABSTRACT: Campos, BT, Penna, EM, Rodrigues, JGS, Mendes, TT, Maia-Lima, A, Nakamura, FY, Vieira, ÉLM, Wanner, SP, and Prado, LS. Influence of mental fatigue on physical performance, and physiological and perceptual responses of judokas submitted to the Special Judo Fitness Test. J Strength Cond Res 36(2): 461-468, 2022-Mentally fatigued athletes present impaired aerobic performance, strength endurance, and manual dexterity, despite no changes in anaerobic performance and maximal muscle strength and power. Noteworthy, the effect of mental fatigue on physical performance during high-intensity intermittent tests that require specific motor skills of fighting sports has not been investigated. Therefore, this study aimed to verify whether mental fatigue influences performance and physiological and perceptual responses of judokas subjected to a high-intensity intermittent test designed specifically and validated for judo. Each judoka performed 2 experimental trials-a control trial one and the other one after the induction of mental fatigue. These trials were scheduled in a random and balanced order. In both trials, lactate, glucose, and cortisol concentrations, the heart rate variability, and perceptual variables were collected after the initial treatment and after the Special Judo Fitness Test (SJFT). The initial treatment consisted of a 30-minute cognitive demanding task (Stroop Color test) or watching a movie (control) and was followed by the SJFT. The Stroop Color test increased the perceptions of mental fatigue and effort, without affecting motivation for subsequent testing. Unexpectedly, mentally fatigued athletes did not show reduced performance during the SJFT. Regarding the physiological variables, no significant differences were identified between the 2 experimental conditions. We conclude that physical performance measured during a specific test for judokas is not impaired by a previous 30-minute cognitive task that causes mental fatigue. In addition, this cognitive task did not influence the physiological changes induced by the specific physical test.


Assuntos
Desempenho Atlético , Artes Marciais , Teste de Esforço , Humanos , Fadiga Mental , Aptidão Física , Desempenho Físico Funcional
12.
J Therm Biol ; 83: 30-36, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31331522

RESUMO

This study aimed to evaluate the changes in brain (Tbrain) and abdominal (Tabd) temperatures in spontaneously hypertensive rats (SHRs) following fatiguing exercise. Male normotensive Wistar rats (NWRs) and SHRs were used at 16 weeks of age. Their arterial pressure was measured by tail plethysmography prior to the experiments to confirm the hypertensive status of the SHRs. Then, the rats underwent implantation of an abdominal temperature sensor to measure Tabd and a guide cannula in the frontal cortex to enable the insertion of a thermistor to measure Tbrain. After a familiarization period, each animal was subjected to incremental speed exercises until fatigue in either a temperate (25 °C) or warm (32 °C) environment, followed by a 60-min post-exercise period at the same temperature at which they exercised. Tbrain, Tabd and tail-skin temperature (Tskin) were measured every min throughout the experiments. SHRs exhibited higher Tabd values than NWRs, and these higher values were transiently and persistently observed at 25 °C and 32 °C, respectively. For example, at 32 °C, Tabd was 0.84 °C higher in SHRs at the 25th min (large effect size). In contrast, regardless of the ambient temperature, SHRs exhibited similar Tbrain values as NWRs, indicating preserved Tbrain regulation following exercise in hypertensive rats. SHRs presented higher Tskin during the last half of the post-exercise period at 25 °C, whereas no inter-group differences were observed at 32 °C. In conclusion, the present results highlight that SHRs, an animal model that mimics uncontrolled essential hypertension in humans, exhibited greater impairments in regulating Tabd than Tbrain during the post-exercise period.


Assuntos
Abdome/fisiologia , Regulação da Temperatura Corporal , Córtex Cerebral/fisiologia , Hipertensão/fisiopatologia , Esforço Físico , Animais , Temperatura Corporal , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
13.
J Neurosci ; 37(29): 6956-6971, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630253

RESUMO

In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 µg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 µg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking.SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest representation of cold-seeking behavior at the ventral border of the dorsomedial nucleus. We also built maps for cold-induced thermogenesis in unanesthetized rats and found the dorsal hypothalamic area to be its main representation site. Our work identifies the neural substrate of cold-seeking behavior in systemic inflammation and expands the functional topography of the DMH, a structure that modulates autonomic, endocrine, and behavioral responses and is a potential therapeutic target in anxiety and panic disorders.


Assuntos
Comportamento Exploratório , Hipotálamo/fisiopatologia , Hipotermia/etiologia , Hipotermia/fisiopatologia , Inflamação/fisiopatologia , Termogênese , Animais , Comportamento Animal , Temperatura Baixa/efeitos adversos , Estado de Consciência , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Ratos , Ratos Wistar
14.
Br J Nutr ; 119(6): 636-657, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29553034

RESUMO

Nitrate (NO3 -) is an ergogenic nutritional supplement that is widely used to improve physical performance. However, the effectiveness of NO3 - supplementation has not been systematically investigated in individuals with different physical fitness levels. The present study analysed whether different fitness levels (non-athletes v. athletes or classification of performance levels), duration of the test used to measure performance (short v. long duration) and the test protocol (time trials v. open-ended tests v. graded-exercise tests) influence the effects of NO3 - supplementation on performance. This systematic review and meta-analysis was conducted and reported according to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A systematic search of electronic databases, including PubMed, Web of Science, SPORTDiscus and ProQuest, was performed in August 2017. On the basis of the search and inclusion criteria, fifty-four and fifty-three placebo-controlled studies evaluating the effects of NO3 - supplementation on performance in humans were included in the systematic review and meta-analysis, respectively. NO3 - supplementation was ergogenic in non-athletes (mean effect size (ES) 0·25; 95 % CI 0·11, 0·38), particularly in evaluations of performance using long-duration open-ended tests (ES 0·47; 95 % CI 0·23, 0·71). In contrast, NO3 - supplementation did not enhance the performance of athletes (ES 0·04; 95 % CI -0·05, 0·15). After objectively classifying the participants into different performance levels, the frequency of trials showing ergogenic effects in individuals classified at lower levels was higher than that in individuals classified at higher levels. Thus, the present study indicates that dietary NO3 - supplementation improves physical performance in non-athletes, particularly during long-duration open-ended tests.


Assuntos
Suplementos Nutricionais , Teste de Esforço , Nitratos/administração & dosagem , Desempenho Físico Funcional , Atletas , Desempenho Atlético , Exercício Físico , Humanos , Resistência Física , Medição de Risco
15.
J Therm Biol ; 63: 31-40, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28010813

RESUMO

Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control.


Assuntos
Pressão Sanguínea , Temperatura Alta , Esforço Físico/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca , Masculino , Ratos , Ratos Wistar
16.
J Strength Cond Res ; 30(8): 2330-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26808850

RESUMO

Wilke, CF, Ramos, GP, Pacheco, DAS, Santos, WHM, Diniz, MSL, Gonçalves, GGP, Marins, JCB, Wanner, SP, and Silami-Garcia, E. Metabolic demand and internal training load in technical-tactical training sessions of professional futsal players. J Strength Cond Res 30(8): 2330-2340, 2016-The aim of the study was to characterize aspects of technical-tactical training sessions of a professional futsal team. We addressed 4 specific aims: characterize the metabolic demands and intensity of these training sessions, compare the training intensity among players of different positions, compare the intensity of different futsal-specific activities (4 × 4, 6 × 4, and match simulation), and investigate the association between an objective (training impulse; TRIMP) and a subjective method (session rating of perceived exertion; sRPE) of measuring a player's internal training load. Twelve top-level futsal players performed an incremental exercise to determine their maximal oxygen consumption, maximal heart rate (HRmax), ventilatory threshold (VT), and respiratory compensation point (RCP). Each player's HR and RPE were measured and used to calculate energy expenditure, TRIMP, and sRPE during 37 training sessions over 8 weeks. The average intensity was 74 ± 4% of HRmax, which corresponded to 9.3 kcal·min. The players trained at intensities above the RCP, between the RCP and VT and below the VT for 20 ± 8%, 28 ± 6%, and 51 ± 10% of the session duration, respectively. Wingers, defenders, and pivots exercised at a similar average intensity but with different intensity distributions. No difference in intensity was found between the 3 typical activities. A strong correlation between the average daily TRIMP and sRPE was observed; however, this relationship was significant for only 4 of 12 players, indicating that sRPE is a useful tool for monitoring training loads but that it should be interpreted for each player individually rather than collectively.


Assuntos
Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Esforço Físico/fisiologia , Futebol/fisiologia , Adolescente , Adulto , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
17.
Br J Nutr ; 112(10): 1601-10, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25322775

RESUMO

Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.


Assuntos
Translocação Bacteriana/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Suplementos Nutricionais , Febre/prevenção & controle , Glutamina/uso terapêutico , Temperatura Alta , Mucosa Intestinal/efeitos dos fármacos , Animais , Dieta , Escherichia coli , Glutamina/farmacologia , Golpe de Calor/prevenção & controle , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fígado/microbiologia , Camundongos , Permeabilidade
18.
PLoS One ; 18(8): e0290081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590220

RESUMO

Environmental heat stress impairs endurance performance by enhancing exercise-induced physiological and perceptual responses. However, the time course of these responses during self-paced running, particularly when comparing hot and temperate conditions, still needs further clarification. Moreover, monitoring fatigue induced by exercise is paramount to prescribing training and recovery adequately, but investigations on the effects of a hot environment on post-exercise neuromuscular fatigue are scarce. This study compared the time course of physiological and perceptual responses during a 10 km self-paced treadmill run (as fast as possible) between temperate (25°C) and hot (35°C) conditions. We also investigated the changes in countermovement jump (CMJ) performance following exercise in these two ambient temperatures. Thirteen recreational long-distance runners (11 men and 2 women), inhabitants of a tropical region, completed the two experimental trials in a randomized order. Compared to 25°C, participants had transiently higher body core temperature (TCORE) and consistently greater perceived exertion while running at 35°C (p < 0.05). These changes were associated with a slower pace, evidenced by an additional 14 ± 5 min (mean ± SD) to complete the 10 km at 35°C than at 25°C (p < 0.05). Before, immediately after, and 1 h after the self-paced run, the participants performed CMJs to evaluate lower limb neuromuscular fatigue. CMJ height was reduced by 7.0% (2.3 ± 2.4 cm) at 1 h after the race (p < 0.05) compared to pre-exercise values; environmental conditions did not influence this reduction. In conclusion, despite the reduced endurance performance, higher perceived exertion, and transiently augmented TCORE caused by environmental heat stress, post-exercise neuromuscular fatigue is similar between temperate and hot conditions. This finding suggests that the higher external load (faster speed) at 25°C compensates for the effects of more significant perceptual responses at 35°C in inducing neuromuscular fatigue.


Assuntos
Fadiga Muscular , Corrida , Masculino , Humanos , Feminino , Esforço Físico , Exercício Físico , Meio Ambiente
19.
Temperature (Austin) ; 10(1): 136-154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187834

RESUMO

We identified the neural pathway of the hyperthermic response to TRPV1 antagonists. We showed that hyperthermia induced by i.v. AMG0347, AMG 517, or AMG8163 did not occur in rats with abdominal sensory nerves desensitized by pretreatment with a low i.p. dose of resiniferatoxin (RTX, TRPV1 agonist). However, neither bilateral vagotomy nor bilateral transection of the greater splanchnic nerve attenuated AMG0347-induced hyperthermia. Yet, this hyperthermia was attenuated by bilateral high cervical transection of the spinal dorsolateral funiculus (DLF). To explain the extra-splanchnic, spinal mediation of TRPV1 antagonist-induced hyperthermia, we proposed that abdominal signals that drive this hyperthermia originate in skeletal muscles - not viscera. If so, in order to prevent TRPV1 antagonist-induced hyperthermia, the desensitization caused by i.p. RTX should spread into the abdominal-wall muscles. Indeed, we found that the local hypoperfusion response to capsaicin (TRPV1 agonist) in the abdominal-wall muscles was absent in i.p. RTX-desensitized rats. We then showed that the most upstream (lateral parabrachial, LPB) and the most downstream (rostral raphe pallidus) nuclei of the intrabrain pathway that controls autonomic cold defenses are also required for the hyperthermic response to i.v. AMG0347. Injection of muscimol (inhibitor of neuronal activity) into the LPB or injection of glycine (inhibitory neurotransmitter) into the raphe blocked the hyperthermic response to i.v. AMG0347, whereas i.v. AMG0347 increased the number of c-Fos cells in the raphe. We conclude that the neural pathway of TRPV1 antagonist-induced hyperthermia involves TRPV1-expressing sensory nerves in trunk muscles, the DLF, and the same LPB-raphe pathway that controls autonomic cold defenses.

20.
Temperature (Austin) ; 10(3): 287-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554383

RESUMO

This study systematically reviewed the literature reporting the changes in rats' core body temperature (TCORE) induced by either incremental- or constant-speed running to fatigue or exhaustion. In addition, multiple linear regression analyses were used to determine the factors contributing to the TCORE values attained when exercise was interrupted. Four databases (EMBASE, PubMed, SPORTDiscus, and Web of Science) were searched in October 2021, and this search was updated in August 2022. Seventy-two studies (n = 1,538 rats) were included in the systematic review. These studies described heterogeneous experimental conditions; for example, the ambient temperature ranged from 5 to 40°C. The rats quit exercising with TCORE values varying more than 8°C among studies, with the lowest and highest values corresponding to 34.9°C and 43.4°C, respectively. Multiple linear regression analyses indicated that the ambient temperature (p < 0.001), initial TCORE (p < 0.001), distance traveled (p < 0.001; only incremental exercises), and running speed and duration (p < 0.001; only constant exercises) contributed significantly to explaining the variance in the TCORE at the end of the exercise. In conclusion, rats subjected to treadmill running exhibit heterogeneous TCORE when fatigued or exhausted. Moreover, it is not possible to determine a narrow range of TCORE associated with exercise cessation in hyperthermic rats. Ambient temperature, initial TCORE, and physical performance-related variables are the best predictors of TCORE at fatigue or exhaustion. From a broader perspective, this systematic review provides relevant information for selecting appropriate methods in future studies designed to investigate exercise thermoregulation in rats.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa