Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834755

RESUMO

Adolescence is a critical period of postnatal development characterized by social, emotional, and cognitive changes. These changes are increasingly understood to depend on white matter development. White matter is highly vulnerable to the effects of injury, including secondary degeneration in regions adjacent to the primary injury site which alters the myelin ultrastructure. However, the impact of such alterations on adolescent white matter maturation is yet to be investigated. To address this, female piebald-virol-glaxo rats underwent partial transection of the optic nerve during early adolescence (postnatal day (PND) 56) with tissue collection two weeks (PND 70) or three months later (PND 140). Axons and myelin in the transmission electron micrographs of tissue adjacent to the injury were classified and measured based on the appearance of the myelin laminae. Injury in adolescence impaired the myelin structure in adulthood, resulting in a lower percentage of axons with compact myelin and a higher percentage of axons with severe myelin decompaction. Myelin thickness did not increase as expected into adulthood after injury and the relationship between the axon diameter and myelin thickness in adulthood was altered. Notably, dysmyelination was not observed 2 weeks postinjury. In conclusion, injury in adolescence altered the developmental trajectory, resulting in impaired myelin maturation when assessed at the ultrastructural level in adulthood.


Assuntos
Doenças Desmielinizantes , Traumatismos do Nervo Óptico , Feminino , Animais , Ratos , Bainha de Mielina/fisiologia , Axônios/ultraestrutura , Nervo Óptico/fisiologia , Traumatismos do Nervo Óptico/complicações , Doenças Desmielinizantes/complicações
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834873

RESUMO

Optic nerve injury causes secondary degeneration, a sequela that spreads damage from the primary injury to adjacent tissue, through mechanisms such as oxidative stress, apoptosis, and blood-brain barrier (BBB) dysfunction. Oligodendrocyte precursor cells (OPCs), a key component of the BBB and oligodendrogenesis, are vulnerable to oxidative deoxyribonucleic acid (DNA) damage by 3 days post-injury. However, it is unclear whether oxidative damage in OPCs occurs earlier at 1 day post-injury, or whether a critical 'window-of-opportunity' exists for therapeutic intervention. Here, a partial optic nerve transection rat model of secondary degeneration was used with immunohistochemistry to assess BBB dysfunction, oxidative stress, and proliferation in OPCs vulnerable to secondary degeneration. At 1 day post-injury, BBB breach and oxidative DNA damage were observed, alongside increased density of DNA-damaged proliferating cells. DNA-damaged cells underwent apoptosis (cleaved caspase3+), and apoptosis was associated with BBB breach. OPCs experienced DNA damage and apoptosis and were the major proliferating cell type with DNA damage. However, the majority of caspase3+ cells were not OPCs. These results provide novel insights into acute secondary degeneration mechanisms in the optic nerve, highlighting the need to consider early oxidative damage to OPCs in therapeutic efforts to limit degeneration following optic nerve injury.


Assuntos
Células Precursoras de Oligodendrócitos , Traumatismos do Nervo Óptico , Animais , Ratos , Traumatismos do Nervo Óptico/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Nervo Óptico/metabolismo , Estresse Oxidativo/fisiologia , DNA/metabolismo
3.
Sci Rep ; 12(1): 14175, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050485

RESUMO

While it is well-established that bone responds dynamically to mechanical loading, the effects of mild traumatic brain injury (mTBI) on cranial bone composition are unclear. We hypothesized that repeated mTBI (rmTBI) would change the microstructure of cranial bones, without gross skull fractures. To address this, young adult female Piebald Viral Glaxo rats received sham, 1×, 2× or 3× closed-head mTBIs delivered at 24 h intervals, using a weight-drop device custom-built for reproducible impact. Skull bones were collected at 2 or 10 weeks after the final injury/sham procedure, imaged by micro computed tomography and analyzed at predetermined regions of interest. In the interparietal bone, proximal to the injury site, modest increases in bone thickness were observed at 2 weeks, particularly following 2× and 3× mTBI. By 10 weeks, 2× mTBI induced a robust increase in the volume and thickness of the interparietal bone, alongside a corresponding decrease in the volume of marrow cavities in the diploë region. In contrast, neither parietal nor frontal skull samples were affected by rmTBI. Our findings demonstrate time- and location-dependent effects of rmTBI on cranial bone structure, highlighting a need to consider microstructural alterations to cranial bone when assessing the consequences of rmTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Concussão Encefálica/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Ratos , Crânio/diagnóstico por imagem , Tempo , Microtomografia por Raio-X
4.
Sci Rep ; 11(1): 22594, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799634

RESUMO

Cuprizone is a copper-chelating agent that induces pathology similar to that within some multiple sclerosis (MS) lesions. The reliability and reproducibility of cuprizone for inducing demyelinating disease pathology depends on the animals ingesting consistent doses of cuprizone. Cuprizone-containing pelleted feed is a convenient way of delivering cuprizone, but the efficacy of these pellets at inducing demyelination has been questioned. This study compared the degree of demyelinating disease pathology between mice fed cuprizone delivered in pellets to mice fed a powdered cuprizone formulation at an early 3 week demyelinating timepoint. Within rostral corpus callosum, cuprizone pellets were more effective than cuprizone powder at increasing astrogliosis, microglial activation, DNA damage, and decreasing the density of mature oligodendrocytes. However, cuprizone powder demonstrated greater protein nitration relative to controls. Furthermore, mice fed control powder had significantly fewer mature oligodendrocytes than those fed control pellets. In caudal corpus callosum, cuprizone pellets performed better than cuprizone powder relative to controls at increasing astrogliosis, microglial activation, protein nitration, DNA damage, tissue swelling, and reducing the density of mature oligodendrocytes. Importantly, only cuprizone pellets induced detectable demyelination compared to controls. The two feeds had similar effects on oligodendrocyte precursor cell (OPC) dynamics. Taken together, these data suggest that demyelinating disease pathology is modelled more effectively with cuprizone pellets than powder at 3 weeks. Combined with the added convenience, cuprizone pellets are a suitable choice for inducing early demyelinating disease pathology.


Assuntos
Cuprizona/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Ração Animal , Animais , Astrócitos/metabolismo , Peso Corporal/efeitos dos fármacos , Quelantes/farmacologia , Corpo Caloso/crescimento & desenvolvimento , Dano ao DNA , Modelos Animais de Doenças , Gliose/patologia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Oligodendroglia/metabolismo , Reprodutibilidade dos Testes
5.
Sci Rep ; 11(1): 9261, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927338

RESUMO

Repeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood-brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Animais , Feminino , Inflamação/metabolismo , Inflamação/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Estresse Oxidativo/fisiologia , Ratos
6.
J Neurotrauma ; 37(5): 739-769, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027208

RESUMO

Traumatic brain injury (TBI) and spinal cord injury (SCI) present a significant contribution to the global disease burden. White matter tracts are susceptible to both the physical forces of trauma and cascades of pathological secondary degeneration. Oligodendrocytes, the myelinating cells of the central nervous system (CNS), and their precursors are particularly vulnerable cell populations and their disruption results in a loss of white matter, dysmyelination, and poor myelin repair. White matter aberrations in TBI and SCI can be visualized in vivo using a number of magnetic resonance imaging (MRI)-based modalities. Recent advances in diffusion MRI allow researchers to investigate subtle abnormalities in white matter microstructure and connectivity, resting state networks, and metabolic perturbations associated with injury. Damage to oligodendroglia underlies white matter aberrations and occurs as a result of glutamate excitotoxicity, intracellular calcium ion (Ca2+) overload, and oxidative damage to lipids, proteins, and DNA. Structural changes to myelin include myelin decompaction, loosening of myelin lamellae, and disruption to the node of Ranvier complex. Neuronal and functional loss accompany dysmyelination together with an increase in astro- and microgliosis. Remyelination is often partial, and more work is needed to understand deficits in remyelination post-injury to develop strategies to both protect and repair myelin and thereby preserve function. This review covers disruptions to oligodendrocyte function and white matter tract structure in the context of TBI and SCI, with an emphasis on Australian contributions in recognition of the International Neurotrauma Symposium held in Melbourne, Australia in 2020.


Assuntos
Lesões Encefálicas/patologia , Doenças Desmielinizantes/patologia , Oligodendroglia/patologia , Traumatismos da Medula Espinal/patologia , Substância Branca/lesões , Austrália , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Traumatismos da Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
7.
Front Neurol ; 11: 491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547485

RESUMO

Whilst detrimental effects of repeated sub-concussive impacts on neurophysiological and behavioral function are increasingly reported, the underlying mechanisms are largely unknown. Here, we report that repeated sub-concussion with a light weight drop (25 g) in wild-type PVG rats for 2 weeks does not induce detectable neuromotor dysfunction assessed by beamwalk and rotarod tests. However, after 12 weeks of repeated sub-concussion, the rats exhibited moderate neuromotor dysfunction. This is the first study to demonstrate development of neuromotor dysfunction following multiple long-term sub-concussive impacts in rats. The outcomes may offer significant opportunity for future studies to understand the mechanisms of sub-concussion-induced neuropsychological changes.

8.
Mult Scler Relat Disord ; 34: 1-8, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202958

RESUMO

BACKGROUND: Multiple sclerosis (MS) has been shown to feature oxidative damage, which can be modelled using the cuprizone model of demyelinating disease. Oxidative damage can occur as a result of excessive influx of calcium ions (Ca2+) and oligodendroglia are particularly vulnerable. However, the effects of limiting excess Ca2+ influx on oxidative damage, oligodendroglia and myelin structure are unknown. OBJECTIVE: This study investigated the effects of limiting excess Ca2+ flux on oxidative damage and associated changes in oligodendroglial densities and Node of Ranvier structure in the cuprizone model. METHODS: The effects of three weeks of cuprizone administration and of treatment with a combination of three ion channel inhibitors (Lomerizine, Brilliant Blue G (BBG) and YM872), were semi-quantified immunohistochemically. Outcomes assessed were protein nitration (3-nitrotyrosine (3NT)) oxidative damage to DNA (8-hydroxy deoxyguanosine (8OHDG)), advanced glycation end-products (carboxymethyl lysine (CML)), immunoreactivity of microglia (Iba1) and astrocytes (glial acidic fibrillary protein (GFAP)), densities of oligodendrocyte precursor cells (OPCs) (platelet derived growth factor alpha receptor (PDGFαR) with olig2) and oligodendrocytes (olig2 and CC1), and structural elements of the Node of Ranvier (contactin associated protein (Caspr)). RESULTS: The administration of cuprizone resulted in increased protein nitration, DNA damage, and astrocyte and microglial immunoreactivity, a decrease in the density of oligodendrocytes and OPCs, together with altered structure of the Node of Ranvier and reduced myelin basic protein immunoreactivity. Treatment with the ion channel inhibitor combination significantly lowered protein nitration, increased the density of OPCs and reduced the number of atypical Node of Ranvier complexes; other outcomes were unaffected. CONCLUSION: Our findings suggest that excess Ca2+ influx contributes to protein nitration, and associated changes to OPC densities and Node of Ranvier structure in demyelinating disease.


Assuntos
Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Canais Iônicos/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cuprizona , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa