Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Clin Inform ; 15(2): 250-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359876

RESUMO

BACKGROUND: Timelines have been used for patient review. While maintaining a compact overview is important, merged event representations caused by the intricate and voluminous patient data bring event recognition, access ambiguity, and inefficient interaction problems. Handling large patient data efficiently is another challenge. OBJECTIVE: This study aims to develop a scalable, efficient timeline to enhance patient review for research purposes. The focus is on addressing the challenges presented by the intricate and voluminous patient data. METHODS: We propose a high-throughput, space-efficient HistoriView timeline for an individual patient. For a compact overview, it uses nonstacking event representation. An overlay detection algorithm, y-shift visualization, and popup-based interaction facilitate comprehensive analysis of overlapping datasets. An i2b2 HistoriView plugin was deployed, using split query and event reduction approaches, delivering the entire history efficiently without losing information. For evaluation, 11 participants completed a usability survey and a preference survey, followed by qualitative feedback. To evaluate scalability, 100 randomly selected patients over 60 years old were tested on the plugin and were compared with a baseline visualization. RESULTS: Most participants found that HistoriView was easy to use and learn and delivered information clearly without zooming. All preferred HistoriView over a stacked timeline. They expressed satisfaction on display, ease of learning and use, and efficiency. However, challenges and suggestions for improvement were also identified. In the performance test, the largest patient had 32,630 records, which exceeds the baseline limit. HistoriView reduced it to 2,019 visual artifacts. All patients were pulled and visualized within 45.40 seconds. Visualization took less than 3 seconds for all. DISCUSSION AND CONCLUSION: HistoriView allows complete data exploration without exhaustive interactions in a compact overview. It is useful for dense data or iterative comparisons. However, issues in exploring subconcept records were reported. HistoriView handles large patient data preserving original information in a reasonable time.


Assuntos
Algoritmos , Aprendizagem , Humanos , Pessoa de Meia-Idade , Satisfação Pessoal , Pacientes
2.
Methods Inf Med ; 61(5-06): 167-173, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070785

RESUMO

OBJECTIVE: To provide high-quality data for coronavirus disease 2019 (COVID-19) research, we validated derived COVID-19 clinical indicators and 22 associated machine learning phenotypes, in the Mass General Brigham (MGB) COVID-19 Data Mart. METHODS: Fifteen reviewers performed a retrospective manual chart review for 150 COVID-19-positive patients in the data mart. To support rapid chart review for a wide range of target data, we offered a natural language processing (NLP)-based chart review tool, the Digital Analytic Patient Reviewer (DAPR). For this work, we designed a dedicated patient summary view and developed new 127 NLP logics to extract COVID-19 relevant medical concepts and target phenotypes. Moreover, we transformed DAPR for research purposes so that patient information is used for an approved research purpose only and enabled fast access to the integrated patient information. Lastly, we performed a survey to evaluate the validation difficulty and usefulness of the DAPR. RESULTS: The concepts for COVID-19-positive cohort, COVID-19 index date, COVID-19-related admission, and the admission date were shown to have high values in all evaluation metrics. However, three phenotypes showed notable performance degradation than the positive predictive value in the prepandemic population. Based on these results, we removed the three phenotypes from our data mart. In the survey about using the tool, participants expressed positive attitudes toward using DAPR for chart review. They assessed that the validation was easy and DAPR helped find relevant information. Some validation difficulties were also discussed. CONCLUSION: Use of NLP technology in the chart review helped to cope with the challenges of the COVID-19 data validation task and accelerated the process. As a result, we could provide more reliable research data promptly and respond to the COVID-19 crisis. DAPR's benefit can be expanded to other domains. We plan to operationalize it for wider research groups.


Assuntos
COVID-19 , Humanos , Estudos Retrospectivos , Data Warehousing , Processamento de Linguagem Natural , Confiabilidade dos Dados
3.
J Am Med Inform Assoc ; 29(4): 643-651, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34849976

RESUMO

OBJECTIVE: Integrating and harmonizing disparate patient data sources into one consolidated data portal enables researchers to conduct analysis efficiently and effectively. MATERIALS AND METHODS: We describe an implementation of Informatics for Integrating Biology and the Bedside (i2b2) to create the Mass General Brigham (MGB) Biobank Portal data repository. The repository integrates data from primary and curated data sources and is updated weekly. The data are made readily available to investigators in a data portal where they can easily construct and export customized datasets for analysis. RESULTS: As of July 2021, there are 125 645 consented patients enrolled in the MGB Biobank. 88 527 (70.5%) have a biospecimen, 55 121 (43.9%) have completed the health information survey, 43 552 (34.7%) have genomic data and 124 760 (99.3%) have EHR data. Twenty machine learning computed phenotypes are calculated on a weekly basis. There are currently 1220 active investigators who have run 58 793 patient queries and exported 10 257 analysis files. DISCUSSION: The Biobank Portal allows noninformatics researchers to conduct study feasibility by querying across many data sources and then extract data that are most useful to them for clinical studies. While institutions require substantial informatics resources to establish and maintain integrated data repositories, they yield significant research value to a wide range of investigators. CONCLUSION: The Biobank Portal and other patient data portals that integrate complex and simple datasets enable diverse research use cases. i2b2 tools to implement these registries and make the data interoperable are open source and freely available.


Assuntos
Bancos de Espécimes Biológicos , Armazenamento e Recuperação da Informação , Coleta de Dados , Humanos , Informática
4.
J Am Med Inform Assoc ; 24(2): 398-402, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27274012

RESUMO

We have developed an interface to serve patient data from Informatics for Integrating Biology and the Bedside (i2b2) repositories in the Fast Healthcare Interoperability Resources (FHIR) format, referred to as a SMART-on-FHIR cell. The cell serves FHIR resources on a per-patient basis, and supports the "substitutable" modular third-party applications (SMART) OAuth2 specification for authorization of client applications. It is implemented as an i2b2 server plug-in, consisting of 6 modules: authentication, REST, i2b2-to-FHIR converter, resource enrichment, query engine, and cache. The source code is freely available as open source. We tested the cell by accessing resources from a test i2b2 installation, demonstrating that a SMART app can be launched from the cell that accesses patient data stored in i2b2. We successfully retrieved demographics, medications, labs, and diagnoses for test patients. The SMART-on-FHIR cell will enable i2b2 sites to provide simplified but secure data access in FHIR format, and will spur innovation and interoperability. Further, it transforms i2b2 into an apps platform.


Assuntos
Data Warehousing , Registros Eletrônicos de Saúde/organização & administração , Interoperabilidade da Informação em Saúde , Interface Usuário-Computador , Pesquisa Biomédica/organização & administração , Troca de Informação em Saúde , Nível Sete de Saúde , Humanos , Software
5.
J Pers Med ; 6(1)2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927184

RESUMO

We have designed a Biobank Portal that lets researchers request Biobank samples and genotypic data, query associated electronic health records, and design and download datasets containing de-identified attributes about consented Biobank subjects. This do-it-yourself functionality puts a wide variety and volume of data at the fingertips of investigators, allowing them to create custom datasets for their clinical and genomic research from complex phenotypic data and quickly obtain corresponding samples and genomic data. The Biobank Portal is built upon the i2b2 infrastructure [1] and uses an open-source web client that is available to faculty members and other investigators behind an institutional firewall. Built-in privacy measures [2] ensure that the data in the Portal are utilized only according to the processes to which the patients have given consent.

6.
J Am Med Inform Assoc ; 22(2): 370-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25352566

RESUMO

OBJECTIVE: Clinical data warehouses have accelerated clinical research, but even with available open source tools, there is a high barrier to entry due to the complexity of normalizing and importing data. The Office of the National Coordinator for Health Information Technology's Meaningful Use Incentive Program now requires that electronic health record systems produce standardized consolidated clinical document architecture (C-CDA) documents. Here, we leverage this data source to create a low volume standards based import pipeline for the Informatics for Integrating Biology and the Bedside (i2b2) clinical research platform. We validate this approach by creating a small repository at Partners Healthcare automatically from C-CDA documents. MATERIALS AND METHODS: We designed an i2b2 extension to import C-CDAs into i2b2. It is extensible to other sites with variances in C-CDA format without requiring custom code. We also designed new ontology structures for querying the imported data. RESULTS: We implemented our methodology at Partners Healthcare, where we developed an adapter to retrieve C-CDAs from Enterprise Services. Our current implementation supports demographics, encounters, problems, and medications. We imported approximately 17 000 clinical observations on 145 patients into i2b2 in about 24 min. We were able to perform i2b2 cohort finding queries and view patient information through SMART apps on the imported data. DISCUSSION: This low volume import approach can serve small practices with local access to C-CDAs and will allow patient registries to import patient supplied C-CDAs. These components will soon be available open source on the i2b2 wiki. CONCLUSIONS: Our approach will lower barriers to entry in implementing i2b2 where informatics expertise or data access are limited.


Assuntos
Pesquisa Biomédica , Continuidade da Assistência ao Paciente , Bases de Dados como Assunto , Armazenamento e Recuperação da Informação , Sistemas de Gerenciamento de Base de Dados , Bases de Dados como Assunto/organização & administração , Humanos , Armazenamento e Recuperação da Informação/métodos , Uso Significativo , Integração de Sistemas
7.
Interact J Med Res ; 2(1): e11, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23722634

RESUMO

BACKGROUND: The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. OBJECTIVE: Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. METHODS: First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service "cells" that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a "carousel" of SMART apps. RESULTS: We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of medications and presents a line-graph display of laboratory results. CONCLUSIONS: This summarization app can be run in any EHR environment that either supports SMART or runs SMART-enabled i2b2. This i2b2 "clinical bridge" demonstrates a pathway for reusable app development that does not require EHR vendors to immediately adopt the SMART API. Apps can be developed in SMART and run by clinicians in the i2b2 repository, reusing clinical data extracted from EHRs. This may encourage the adoption of SMART by supporting SMART app development until EHRs adopt the platform. It also allows a new variety of clinical SMART apps, fueled by the broad aggregation of data types available in research repositories. The app (including its knowledge base) and SMART-i2b2 are open-source and freely available for download.

8.
PLoS One ; 8(3): e55811, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533569

RESUMO

Results of medical research studies are often contradictory or cannot be reproduced. One reason is that there may not be enough patient subjects available for observation for a long enough time period. Another reason is that patient populations may vary considerably with respect to geographic and demographic boundaries thus limiting how broadly the results apply. Even when similar patient populations are pooled together from multiple locations, differences in medical treatment and record systems can limit which outcome measures can be commonly analyzed. In total, these differences in medical research settings can lead to differing conclusions or can even prevent some studies from starting. We thus sought to create a patient research system that could aggregate as many patient observations as possible from a large number of hospitals in a uniform way. We call this system the 'Shared Health Research Information Network', with the following properties: (1) reuse electronic health data from everyday clinical care for research purposes, (2) respect patient privacy and hospital autonomy, (3) aggregate patient populations across many hospitals to achieve statistically significant sample sizes that can be validated independently of a single research setting, (4) harmonize the observation facts recorded at each institution such that queries can be made across many hospitals in parallel, (5) scale to regional and national collaborations. The purpose of this report is to provide open source software for multi-site clinical studies and to report on early uses of this application. At this time SHRINE implementations have been used for multi-site studies of autism co-morbidity, juvenile idiopathic arthritis, peripartum cardiomyopathy, colorectal cancer, diabetes, and others. The wide range of study objectives and growing adoption suggest that SHRINE may be applicable beyond the research uses and participating hospitals named in this report.


Assuntos
Pesquisa Biomédica/métodos , Software , Humanos
9.
AMIA Annu Symp Proc ; 2012: 960-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23304371

RESUMO

The Substitutable Medical Apps, Reusable Technologies (SMART) project provides a framework of core services to facilitate the use of substitutable health-related web applications. The platform offers a common interface used to "SMART-ready" health IT systems allowing any SMART application to be able to interact with those systems. At Partners Healthcare, we have SMART-enabled the Informatics for Integrating Biology and the Bedside (i2b2) open source analytical platform, enabling the use of SMART applications directly within the i2b2 web client. In i2b2, viewing the patient in an EMR-like view enables a natural-feeling medical review process for each patient.


Assuntos
Registros Eletrônicos de Saúde , Software , Interface Usuário-Computador , Pesquisa Biomédica , Humanos , Armazenamento e Recuperação da Informação , Internet , Integração de Sistemas
10.
PLoS One ; 7(4): e33224, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511918

RESUMO

OBJECTIVES: Use electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults. STUDY DESIGN: A retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were characterized by their co-morbidities and conversely, the prevalence of ASD within these comorbidities was measured. The comorbidity prevalence of the younger (Age<18 years) and older (Age 18-34 years) individuals with ASD was compared. RESULTS: 19.44% of ASD patients had epilepsy as compared to 2.19% in the overall hospital population (95% confidence interval for difference in percentages 13.58-14.69%), 2.43% of ASD with schizophrenia vs. 0.24% in the hospital population (95% CI 1.89-2.39%), inflammatory bowel disease (IBD) 0.83% vs. 0.54% (95% CI 0.13-0.43%), bowel disorders (without IBD) 11.74% vs. 4.5% (95% CI 5.72-6.68%), CNS/cranial anomalies 12.45% vs. 1.19% (95% CI 9.41-10.38%), diabetes mellitus type I (DM1) 0.79% vs. 0.34% (95% CI 0.3-0.6%), muscular dystrophy 0.47% vs 0.05% (95% CI 0.26-0.49%), sleep disorders 1.12% vs. 0.14% (95% CI 0.79-1.14%). Autoimmune disorders (excluding DM1 and IBD) were not significantly different at 0.67% vs. 0.68% (95% CI -0.14-0.13%). Three of the studied comorbidities increased significantly when comparing ages 0-17 vs 18-34 with p<0.001: Schizophrenia (1.43% vs. 8.76%), diabetes mellitus type I (0.67% vs. 2.08%), IBD (0.68% vs. 1.99%) whereas sleeping disorders, bowel disorders (without IBD) and epilepsy did not change significantly. CONCLUSIONS: The comorbidities of ASD encompass disease states that are significantly overrepresented in ASD with respect to even the patient populations of tertiary health centers. This burden of comorbidities goes well beyond those routinely managed in developmental medicine centers and requires broad multidisciplinary management that payors and providers will have to plan for.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/epidemiologia , Adolescente , Adulto , Boston , Criança , Pré-Escolar , Estudos de Coortes , Comorbidade , Registros Eletrônicos de Saúde , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Prevalência , Razão de Masculinidade
11.
AMIA Annu Symp Proc ; : 1170, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18999043

RESUMO

The Partners Healthcare Research Patient Data Registry (RPDR) is a centralized data repository that gathers clinical data from various hospital systems. The RPDR allows clinical investigators to obtain aggregate numbers of patients with user-defined characteristics such as diagnoses, procedures, medications, and laboratory values. They may then obtain patient identifiers and electronic medical records with prior IRB approval. Moreover, the accurate identification and efficient population of worthwhile and quantifiable facts from doctor's report into the RPDR is a significant process. As part of our ongoing e-Fact project, this work describes a new business process management technology that helps coordinate and simplify this procedure.


Assuntos
Controle de Formulários e Registros , Armazenamento e Recuperação da Informação/métodos , Registro Médico Coordenado , Sistemas Computadorizados de Registros Médicos , Processamento de Linguagem Natural , Reconhecimento Automatizado de Padrão/métodos , Sistema de Registros , Terminologia como Assunto , Algoritmos , Inteligência Artificial , Massachusetts
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa