RESUMO
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Assuntos
Adenilil Ciclases/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 µM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Assuntos
Adenilil Ciclases , Organofosfonatos , Humanos , Toxina Adenilato Ciclase , Células HEK293 , Organofosfonatos/farmacologia , Nucleosídeos/químicaRESUMO
Heterologous sensitization of adenylyl cyclase (AC) is revealed as enhanced or exaggerated AC/cAMP signaling that occurs following persistent activation of Gα i/o-coupled receptors. This paradoxical phenomenon was discovered more than 40 years ago and was proposed as a cellular mechanism to explain the adaptive changes that occur following chronic exposure to drugs of abuse. However, the underlying molecular mechanisms of heterologous sensitization of AC remain largely unknown. In the present study, we performed a genome-wide cell-based RNA interference screen as an unbiased approach to identify genes associated with heterologous sensitization of AC. Following a series of validation and confirmation assays, three genes that form an E3 ligase complex, cullin3 (CUL3), neural precursor-cell-expressed and developmentally downregulated 8 (NEDD8), and really interesting new gene (RING)-box protein 1 (RBX1), were identified as specific modulators of heterologous sensitization of AC. Furthermore, based on the downstream actions of these genes, we evaluated the activity of proteasome inhibitors as well as the specific NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat), in AC sensitization. We demonstrate that MG-132 and bortezomib treatments could mimic the inhibitory effects observed with gene knockdown, and MLN4924 was potent and efficacious in blocking the development of heterologous sensitization of endogenous and recombinant AC isoforms, including AC1, AC2, AC5, and AC6. Together, by using genetic and pharmacological approaches, we identified, for the first time, cullin3-RING ligases and the protein degradation pathway as essential modulators for heterologous sensitization of AC. SIGNIFICANCE STATEMENT: Through a genome-wide cell-based RNA interference screening, we identified three genes that form an E3 ligase complex, cullin3, neural precursor-cell-expressed and developmentally downregulated 8 (NEDD8), and really interesting new gene-box protein 1, as specific modulators of heterologous sensitization of AC. The effect of cullin3, NEDD8, or really interesting new gene-box protein 1 small interfering RNAs on heterologous sensitization was recapitulated by proteasome inhibitors, MG132 and bortezomib, and the specific NEDD8-activating enzyme inhibitor, MLN4924. These results suggest a novel hypothesis in which protein degradation is involved in the sensitization of AC signaling that occurs following chronic activation of Gαi/o-coupled receptors.
Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteína NEDD8/genética , Ubiquitina-Proteína Ligases/genética , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/genética , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Ciclopentanos/farmacologia , Ativação Enzimática , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Pirimidinas/farmacologia , RNA Interferente Pequeno , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de SinaisRESUMO
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Assuntos
Adenilil Ciclases/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/química , Animais , Humanos , Conformação Proteica , Transdução de Sinais , Terminologia como AssuntoRESUMO
Membrane-bound adenylyl cyclase (AC) isoforms have distinct regulatory mechanisms that contribute to their signaling specificity and physiologic roles. Although insight into the physiologic relevance of AC9 has progressed, the understanding of AC9 regulation is muddled with conflicting studies. Currently, modes of AC9 regulation include stimulation by Gαs, protein kinase C (PKC) ßII, or calcium-calmodulin kinase II (CaMKII) and inhibition by Gαi/o, novel PKC isoforms, or calcium-calcineurin. Conversely, the original cloning of human AC9 reported that AC9 is insensitive to Gαi inhibition. The purpose of our study was to clarify which proposed regulators of AC9 act directly or indirectly, particularly with respect to Gαi/o. The proposed regulators, including G proteins (Gαs, Gαi, Gαo, Gßγ), protein kinases (PKCßII, CaMKII), and forskolin, were systematically evaluated using classic in vitro AC assays and cell-based cAMP accumulation assays in COS-7 cells. Our studies show that AC9 is directly regulated by Gαs with weak conditional activation by forskolin; other modes of proposed regulation either occur indirectly or possibly require additional scaffolding proteins to facilitate regulation. We also show that AC9 contributes to basal cAMP production; knockdown or knockout of endogenous AC9 reduces basal AC activity in COS-7 cells and splenocytes. Importantly, although AC9 is not directly inhibited by Gαi/o, it can heterodimerize with Gαi/o-regulated isoforms, AC5 and AC6.
Assuntos
Adenilil Ciclases/metabolismo , Animais , Células COS , Calcineurina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Chlorocebus aethiops , Colforsina/farmacologia , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Proteína Quinase C beta/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Functional characterization of adenylyl cyclase (AC) isoforms has proven challenging in mammalian cells because of the endogenous expression of multiple AC isoforms and the high background cAMP levels induced by nonselective AC activators. To simplify the characterization of individual transmembrane AC (mAC) isoforms, we generated a human embryonic kidney cell line 293 (HEK293) with low cAMP levels by knocking out two highly expressed ACs, AC3 and AC6, using CRISPR/Cas9 technology. Stable HEK293 cell lines lacking either AC6 (HEK-ACΔ6) or both AC3 and AC6 (HEK-ACΔ3/6) were generated. Knockout was confirmed genetically and by comparing cAMP responses of the knockout cells to the parental cell line. HEK-ACΔ6 and HEK-ACΔ3/6 cells revealed an 85% and 95% reduction in the forskolin-stimulated cAMP response, respectively. Forskolin- and Gαs-coupled receptor-induced activation was examined for the nine recombinant mAC isoforms in the HEK-ACΔ3/6 cells. Forskolin-mediated cAMP accumulation for AC1-6 and AC8 revealed 10- to 250-fold increases over the basal cAMP levels. All nine mAC isoforms, except AC8, also exhibited significantly higher cAMP levels than the control cells after Gαs-coupled receptor activation. Isoform-specific AC regulation by protein kinases and Ca2+/calmodulin was also recapitulated in the knockout cells. Furthermore, the utility of the HEK-ACΔ3/6 cell line was demonstrated by characterizing the activity of novel AC1 forskolin binding-site mutants. Hence, we have developed a HEK293 cell line deficient of endogenous AC3 and AC6 with low cAMP background levels for studies of cAMP signaling and AC isoform regulation.
Assuntos
Adenilil Ciclases/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Adenilil Ciclases/química , Sítios de Ligação/fisiologia , Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas/efeitos dos fármacos , Colforsina/metabolismo , Colforsina/farmacologia , AMP Cíclico/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacosRESUMO
Adenylyl cyclase 2 (AC2) is one of nine membrane-bound isoforms of adenylyl cyclase that converts ATP into cyclic AMP (cAMP), an important second messenger molecule. Upregulation of AC2 is linked to cancers like pancreatic and small intestinal neuroendocrine tumors (NETs). The structures of the various isoforms of adenylyl cyclases are highly homologous, posing a significant challenge to drug discovery efforts for an effective, isoform-selective modulator of AC2. In a previous study, a screen identified a potential isoform-selective and noncompetitive inhibitor of AC2, SKF83566. In the present study, molecular modeling is used to explore the mode of inhibition of AC2 by SKF83566 and to investigate the active enantiomer of SKF83566. Homology models of hAC2 were built based on canine AC5-C1a and rat AC2-C2a templates. With these models, a combination of flexible docking, molecular dynamics simulations, and free energy calculations using the MM/GBSA methodology suggested an allosteric mechanism in which (S)-SKF83566 binds to an allosteric site near ATP and alters the protein conformation of the ATP binding site, potentially preventing the adenosine moiety of ATP from forming an archlike shape to form cAMP. The predicted binding preference for the (S)-SKF83566 enantiomer and the predicted free energy are consistent with the experimental data.
Assuntos
Adenilil Ciclases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Adenilil Ciclases/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Humanos , Conformação Proteica , Homologia de Sequência de Aminoácidos , EstereoisomerismoRESUMO
Persistent activation of most Gαi/o-coupled receptors resulted in enhanced activity of adenylyl cyclase (AC) and subsequent cyclic adenosine monophosphate (c AMP) accumulation within cells, and this phenomenon has generally been referred to as supersensitization of AC. It represents a cellular adaptive response that has been widely believed to be the cause of drug dependence. Supersensitization of AC might have an important impact during the processes of many central nervous system (CNS) disorder diseases, such as schizophrenia and depression, due to altered cell functions. This article provides an overview of the history and present status in our understanding of Gα(i/o)-coupled receptor-mediated supersensitization of AC, as well as discussion of the problems and future perspective.
Assuntos
Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Transdução de SinaisRESUMO
G protein-coupled receptors (GPCRs) often activate multiple signaling pathways, and ligands may evoke functional responses through individual pathways. These unique responses provide opportunities for biased or functionally selective ligands to preferentially modulate one signaling pathway over another. Studies with several GPCRs have suggested that selective activation of signaling pathways downstream of a GPCR may lead to safer and more effective drug therapies. The dopamine D2 receptor (D2R) is one of the main drug targets in the therapies for Parkinson's disease and schizophrenia. Recent studies suggest that selective modulation of individual signaling pathways downstream of the D2R may lead to safer antipsychotic drugs. In the present study, immediate effectors of the D2R (i.e., Gαi/o, Gßγ, ß-arrestin recruitment) and more complex signaling pathways (i.e., extracellular signal-regulated kinase phosphorylation, heterologous sensitization, and dynamic mass redistribution) were examined in response to a series of D2R ligands. This was accomplished using Chinese hamster ovary cells stably expressing the human D2L dopamine receptor in the PathHunter ß-Arrestin GPCR Assay Platform. The use of a uniform cellular background was designed to eliminate potential confounds associated with cell-to-cell variability, including expression levels of receptor as well as other components of signal transduction, including G protein subunits. Several well characterized and clinically relevant D2R ligands were evaluated across each signaling pathway in this cellular model. The most commonly used methods to measure ligand bias were compared. Functional selectivity analyses were also used as tools to explore the relative contribution of immediate D2R effectors for the activation of more complex signaling pathways.
Assuntos
Dopaminérgicos/farmacologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Ligantes , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
The yellow fever mosquito, Aedes aegypti, vectors disease-causing agents that adversely affect human health, most notably the viruses causing dengue and yellow fever. The efficacy of current mosquito control programs is challenged by the emergence of insecticide-resistant mosquito populations, suggesting an urgent need for the development of chemical insecticides with new mechanisms of action. One recently identified potential insecticide target is the A. aegypti D1-like dopamine receptor, AaDOP2. The focus of the present study was to evaluate AaDOP2 antagonism both in vitro and in vivo using assay technologies with increased throughput. The in vitro assays revealed AaDOP2 antagonism by four distinct chemical scaffolds from tricyclic antidepressant or antipsychotic chemical classes, and elucidated several structure-activity relationship trends that contributed to enhanced antagonist potency, including lipophilicity, halide substitution on the tricyclic core, and conformational rigidity. Six compounds displayed previously unparalleled potency for in vitro AaDOP2 antagonism, and among these, asenapine, methiothepin, and cis-(Z)-flupenthixol displayed subnanomolar IC50 values and caused rapid toxicity to A. aegypti larvae and/or adults in vivo. Our study revealed a significant correlation between in vitro potency for AaDOP2 antagonism and in vivo toxicity, suggesting viability of AaDOP2 as an insecticidal target. Taken together, this study expanded the repertoire of known AaDOP2 antagonists, enhanced our understanding of AaDOP2 pharmacology, provided further support for rational targeting of AaDOP2, and demonstrated the utility of efficiency-enhancing in vitro and in vivo assay technologies within our genome-to-lead pipeline for the discovery of next-generation insecticides.
Assuntos
Aedes , Antidepressivos , Antipsicóticos , Antagonistas de Dopamina , Proteínas de Insetos/antagonistas & inibidores , Controle de Mosquitos/métodos , Receptores Dopaminérgicos/metabolismo , Aedes/fisiologia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Larva , Bibliotecas de Moléculas Pequenas , Febre Amarela/transmissãoRESUMO
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Assuntos
Adenilil Ciclases , Neoplasias , Humanos , Adenilil Ciclases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/enzimologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Inibidores de Adenilil Ciclases/farmacologiaRESUMO
Adenylyl cyclase isoform 1 (AC1) is considered a promising target for treating inflammatory pain. Our group identified the pyrazolyl-pyrimidinone scaffold as potent and selective inhibitors of Ca2+/CaM-mediated AC1 activity; however, the molecules suffered from poor aqueous solubility. The current study presents a strategy to improve aqueous solubility of the scaffold by reduction of crystal packing energy and increasing rotational degrees of freedom within the molecule. Structure-activity and property relationship studies identified the second generation lead 7-47A (AC10142A) that demonstrated and AC1 IC50 value of 0.26 µM and aqueous solubility of 74 ± 7 µM. After in vitro ADME characterization, the scaffold advanced to in vivo pharmacokinetic evaluation, demonstrating adequate levels of exposure. Finally, 7-47A exhibited antiallodynic efficacy in a rat complete Freund's adjuvant model for inflammatory pain showing improvement over previous iterations of this scaffold. These results further validate AC1 inhibition as a viable therapeutic strategy for treating chronic and inflammatory pain.
Assuntos
Adenilil Ciclases , Inflamação , Dor , Pirazóis , Pirimidinonas , Solubilidade , Animais , Relação Estrutura-Atividade , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Pirazóis/uso terapêutico , Pirazóis/farmacocinética , Ratos , Adenilil Ciclases/metabolismo , Pirimidinonas/farmacologia , Pirimidinonas/química , Pirimidinonas/síntese química , Pirimidinonas/uso terapêutico , Pirimidinonas/farmacocinética , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Masculino , Ratos Sprague-Dawley , Inibidores de Adenilil Ciclases/farmacologia , Inibidores de Adenilil Ciclases/química , Inibidores de Adenilil Ciclases/síntese química , Inibidores de Adenilil Ciclases/uso terapêutico , Humanos , Adjuvante de FreundRESUMO
The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gßγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gßγ and a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gßγ and show reduced conditional activation by Gßγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.
Assuntos
Adenilil Ciclases , Microscopia Crioeletrônica , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/química , Humanos , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/química , Modelos Moleculares , Células HEK293 , Multimerização Proteica , Ligação Proteica , Animais , Mutação , Conformação ProteicaRESUMO
A long-held tenet in inositol-lipid signaling is that cleavage of membrane phosphoinositides by phospholipase Cß (PLCß) isozymes to increase cytosolic Ca2+ in living cells is exclusive to Gq- and Gi-sensitive G protein-coupled receptors (GPCRs). Here we extend this central tenet and show that Gs-GPCRs also partake in inositol-lipid signaling and thereby increase cytosolic Ca2+. By combining CRISPR/Cas9 genome editing to delete Gαs, the adenylyl cyclase isoforms 3 and 6, or the PLCß1-4 isozymes, with pharmacological and genetic inhibition of Gq and G11, we pin down Gs-derived Gßγ as driver of a PLCß2/3-mediated cytosolic Ca2+ release module. This module does not require but crosstalks with Gαs-dependent cAMP, demands Gαq to release PLCß3 autoinhibition, but becomes Gq-independent with mutational disruption of the PLCß3 autoinhibited state. Our findings uncover the key steps of a previously unappreciated mechanism utilized by mammalian cells to finetune their calcium signaling regulation through Gs-GPCRs.
Assuntos
Sinalização do Cálcio , Cálcio , Fosfolipase C beta , Receptores Acoplados a Proteínas G , Humanos , Fosfolipase C beta/metabolismo , Fosfolipase C beta/genética , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Cálcio/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Sistemas CRISPR-Cas , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , AMP Cíclico/metabolismo , Animais , Edição de Genes , Citosol/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genéticaRESUMO
Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells.
Assuntos
2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , Inibidores de Adenilil Ciclases , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/química , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Adenilil Ciclases/genética , Animais , Membrana Celular/enzimologia , Membrana Celular/imunologia , AMP Cíclico/metabolismo , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Camundongos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/imunologia , Células Sf9 , Bibliotecas de Moléculas Pequenas/química , Spodoptera , TransfecçãoRESUMO
Activator of G protein signaling 3 (AGS3) binds Gα(i) subunits in the GDP-bound state, implicating AGS3 as an important regulator of Gα(i)-linked receptor (e.g., D2 dopamine and µ-opioid) signaling. We examined the ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 signaling in HEK293 cells following both acute and persistent activation of the D(2L) dopamine receptor (D(2L)DR). AGS3 expression modestly enhanced the potency of acute quinpirole-induced D(2L)DR modulation of AC1 or AC2 activity. AGS3 also promoted desensitization of D(2L)DR-mediated inhibition of AC1, whereas desensitization of D(2L)DR-mediated AC2 activation was significantly attenuated. Additionally, AGS3 reduced D(2L)DR-mediated sensitization of AC1 and AC2. These data suggest that AGS3 is involved in altering G protein signaling in a complex fashion that is effector-specific and dependent on the duration of receptor activation.
Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Animais , Células HEK293 , Humanos , Drogas Ilícitas/farmacologia , Isoenzimas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein Gαs, but their response to Gßγ regulation is isoform-specific. For example, AC5 is conditionally activated by Gßγ. Here, we report cryo-EM structures of ligand-free AC5 in complex with Gßγ and of a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. The interface with Gßγ involves AC5 residues that are subject to gain-of-function mutations in humans with familial dyskinesia, indicating that the observed interaction is important for motor function. A molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core, is proposed. Because our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.
RESUMO
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Assuntos
Bases de Dados de Produtos Farmacêuticos , Canais Iônicos , Humanos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas GRESUMO
To refine further the structure-activity relationships of D(1) dopamine receptor agonists, we investigated the roles of three conserved serine residues [Ser198(5.42), Ser199(5.43), and Ser202(5.46)] in agonist binding and receptor activation. These transmembrane domain 5 (TM5) residues are believed to engage catechol ligands through polar interactions. We stably expressed wild-type or mutant (S198A, S199A, and S202A) D(1) receptors in human embryonic kidney cells. These receptors were expressed at similar levels (approximately 2000 fmol/mg) and bound the radioligand [(3)H]R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390), although S198A and S199A displayed significant losses of affinity compared with that for wild-type receptors. The endogenous agonist, dopamine, had losses of potency at each of the mutant receptors. We tested cyclohexyl-substituted isochroman, carbocyclic, and chroman bicyclic dopamine analogs and found that the mutations affected the chroman to a lesser extent than the other compounds. These results support our hypothesis that the decreased D(1) activity of chroman analogs results from a ligand intramolecular hydrogen bond that impairs the ability of the catechol to engage the receptor. Sensitivities of these rigid catechol agonists to the effects of the serine mutations were dependent on ligand geometry, particularly with respect to the rotameric conformation of the ethylamine side chain and the distance between the amino group and each catechol hydroxyl. Functional experiments in striatal tissue suggest that the ability to engage TM5 serines is largely correlated with agonist efficacy for cAMP stimulation. These results provide a new understanding of the complexities of D(1) ligand recognition and agonist activation and have implications for the design of rigid catechol ligands.
Assuntos
Catecóis/metabolismo , Agonistas de Dopamina/metabolismo , Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Benzazepinas/metabolismo , Catecóis/farmacologia , Células Cultivadas , AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Relação Estrutura-AtividadeRESUMO
This work describes the identification of a novel class of octahydrobenzo[f]quinolines as dopamine D(3)-selective full agonists. We developed a facile method that utilizes Suzuki coupling for easy incorporations of various substituted pendant rings into the scaffold. A small focused library of octahydrobenzo[f]quinolines 5 was synthesized, and these compounds demonstrated at least 14-fold D(2)-like selectivity over D(1) in native porcine striatal tissue. Furthermore, n-propyl analog 5f was found to be a high affinity (K(i)=1.1 nM) D(3) dopamine full agonist with 145-fold selectivity over the D(2) receptor and about 840-fold selectivity over the D(1) receptor.