Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 557-565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172636

RESUMO

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Assuntos
Condrócitos , Canal de Sódio Disparado por Voltagem NAV1.7 , Osteoartrite , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Progressão da Doença , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/metabolismo , Osteoartrite/complicações , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Dor/complicações , Dor/tratamento farmacológico , Dor/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
2.
Nat Rev Neurosci ; 24(4): 252-265, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658346

RESUMO

With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.


Assuntos
Dor Crônica , Nociceptores , Humanos , Nociceptores/metabolismo , Dor Crônica/genética , Dor Crônica/terapia , Dor Crônica/metabolismo , Transcriptoma
3.
Annu Rev Neurosci ; 42: 87-106, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30702961

RESUMO

Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.


Assuntos
Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/fisiologia , Transtornos Somatoformes/fisiopatologia , Animais , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Previsões , Gânglios Espinais/fisiopatologia , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Nervos Periféricos/fisiopatologia , Testes Farmacogenômicos , Domínios Proteicos , Células Receptoras Sensoriais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/química , Canais de Sódio/genética , Transtornos Somatoformes/tratamento farmacológico , Transtornos Somatoformes/genética , Relação Estrutura-Atividade
4.
Nature ; 598(7881): 489-494, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599306

RESUMO

The similarities and differences between nervous systems of various species result from developmental constraints and specific adaptations1-4. Comparative analyses of the prefrontal cortex (PFC), a cerebral cortex region involved in higher-order cognition and complex social behaviours, have identified true and potential human-specific structural and molecular specializations4-8, such as an exaggerated PFC-enriched anterior-posterior dendritic spine density gradient5. These changes are probably mediated by divergence in spatiotemporal gene regulation9-17, which is particularly prominent in the midfetal human cortex15,18-20. Here we analysed human and macaque transcriptomic data15,20 and identified a transient PFC-enriched and laminar-specific upregulation of cerebellin 2 (CBLN2), a neurexin (NRXN) and glutamate receptor-δ GRID/GluD-associated synaptic organizer21-27, during midfetal development that coincided with the initiation of synaptogenesis. Moreover, we found that species differences in level of expression and laminar distribution of CBLN2 are, at least in part, due to Hominini-specific deletions containing SOX5-binding sites within a retinoic acid-responsive CBLN2 enhancer. In situ genetic humanization of the mouse Cbln2 enhancer drives increased and ectopic laminar Cbln2 expression and promotes PFC dendritic spine formation. These findings suggest a genetic and molecular basis for the anterior-posterior cortical gradient and disproportionate increase in the Hominini PFC of dendritic spines and a developmental mechanism that may link dysfunction of the NRXN-GRID-CBLN2 complex to the pathogenesis of neuropsychiatric disorders.


Assuntos
Dendritos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/citologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macaca , Transtornos Mentais/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/patologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXD/metabolismo , Transcriptoma , Regulação para Cima
5.
Proc Natl Acad Sci U S A ; 121(37): e2406186121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226353

RESUMO

The factors that contribute to pain after nerve injury remain incompletely understood. Laser-assisted in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK) are common surgical techniques to correct refractive errors. After LASIK or PRK, a subset of patients suffers intense and persistent pain, of unknown origin, described by patients as feeling like shards of glass in their eye. Here, we evaluated a TRPV1 variant, p.V527M, found in a 49-y-old woman who developed corneal pain after LASIK and subsequent PRK enhancement, reporting an Ocular Surface Disease Index score of 100. Using patch-clamp and Ca2+ imaging, we found that the V527M mutation enhances the response to acidic pH. Increasing proton concentration induced a stronger leftward shift in the activation curve of V527M compared to WT, resulting in channel activity of the mutant in acidic pH at more physiological membrane potentials. Finally, comparing the responses to consecutive applications of different agonists, we found in V527M channels a reduced capsaicin-induced desensitization and increased sensitization by the arachidonic acid metabolite 12-hydroxyeicosatetraenoic acid (12-HETE). We hypothesize that the increased response in V527M channels to protons and enhanced sensitization by 12-HETE, two inflammatory mediators released in the cornea after tissue damage, may contribute to the pathogenesis of corneal neuralgia after refractive surgery.


Assuntos
Bradicinina , Capsaicina , Mutação , Neuralgia , Canais de Cátion TRPV , Animais , Humanos , Ratos , Bradicinina/metabolismo , Bradicinina/farmacologia , Capsaicina/farmacologia , Córnea/metabolismo , Córnea/patologia , Células HEK293 , Concentração de Íons de Hidrogênio , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/etiologia , Ceratectomia Fotorrefrativa/efeitos adversos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
6.
Physiol Rev ; 99(2): 1079-1151, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30672368

RESUMO

Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.


Assuntos
Dor Crônica/metabolismo , Limiar da Dor , Células Receptoras Sensoriais/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/uso terapêutico , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Dor Crônica/fisiopatologia , Desenho de Fármacos , Humanos , Limiar da Dor/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
7.
Proc Natl Acad Sci U S A ; 120(11): e2215417120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897973

RESUMO

Inflammation causes pain by shifting the balance of ionic currents in nociceptors toward depolarization, leading to hyperexcitability. The ensemble of ion channels within the plasma membrane is regulated by processes including biogenesis, transport, and degradation. Thus, alterations in ion channel trafficking may influence excitability. Sodium channel NaV1.7 and potassium channel KV7.2 promote and oppose excitability in nociceptors, respectively. We used live-cell imaging to investigate mechanisms by which inflammatory mediators (IM) modulate the abundance of these channels at axonal surfaces through transcription, vesicular loading, axonal transport, exocytosis, and endocytosis. Inflammatory mediators induced a NaV1.7-dependent increase in activity in distal axons. Further, inflammation increased the abundance of NaV1.7, but not of KV7.2, at axonal surfaces by selectively increasing channel loading into anterograde transport vesicles and insertion at the membrane, without affecting retrograde transport. These results uncover a cell biological mechanism for inflammatory pain and suggest NaV1.7 trafficking as a potential therapeutic target.


Assuntos
Axônios , Nociceptores , Ratos , Animais , Axônios/metabolismo , Dor/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo
8.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37963762

RESUMO

Spasticity is a hyperexcitability disorder that adversely impacts functional recovery and rehabilitative efforts after spinal cord injury (SCI). The loss of evoked rate-dependent depression (RDD) of the monosynaptic H-reflex is indicative of hyperreflexia, a physiological sign of spasticity. Given the intimate relationship between astrocytes and neurons, that is, the tripartite synapse, we hypothesized that astrocytes might have a significant role in post-injury hyperreflexia and plasticity of neighboring neuronal synaptic dendritic spines. Here, we investigated the effect of selective Rac1KO in astrocytes (i.e., adult male and female mice, transgenic cre-flox system) on SCI-induced spasticity. Three weeks after a mild contusion SCI, control Rac1wt animals displayed a loss of H-reflex RDD, that is, hyperreflexia. In contrast, transgenic animals with astrocytic Rac1KO demonstrated near-normal H-reflex RDD similar to pre-injury levels. Reduced hyperreflexia in astrocytic Rac1KO animals was accompanied by a loss of thin-shaped dendritic spine density on α-motor neurons in the ventral horn. In SCI-Rac1wt animals, as expected, we observed the development of dendritic spine dysgenesis on α-motor neurons associated with spasticity. As compared with WT animals, SCI animals with astrocytic Rac1KO expressed increased levels of the glial-specific glutamate transporter, glutamate transporter-1 in the ventral spinal cord, potentially enhancing glutamate clearance from the synaptic cleft and reducing hyperreflexia in astrocytic Rac1KO animals. Taken together, our findings show for the first time that Rac1 activity in astrocytes can contribute to hyperreflexia underlying spasticity following SCI. These results reveal an opportunity to target cell-specific molecular regulators of H-reflex excitability to manage spasticity after SCI.Significance Statement Spinal cord injury leads to stretch reflex hyperexcitability, which underlies the clinical symptom of spasticity. This study shows for the first time that astrocytic Rac1 contributes to the development of hyperreflexia after SCI. Specifically, astrocytic Rac1KO reduced SCI-related H-reflex hyperexcitability, decreased dendritic spine dysgenesis on α-motor neurons, and elevated the expression of the astrocytic glutamate transporter-1 (GLT-1). Overall, this study supports a distinct role for astrocytic Rac1 signaling within the spinal reflex circuit and the development of SCI-related spasticity.


Assuntos
Reflexo Anormal , Traumatismos da Medula Espinal , Camundongos , Masculino , Feminino , Animais , Astrócitos/metabolismo , Neurônios Motores/fisiologia , Medula Espinal/metabolismo , Animais Geneticamente Modificados , Reflexo H , Sistema X-AG de Transporte de Aminoácidos/metabolismo
9.
Brain ; 147(9): 3157-3170, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447953

RESUMO

Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.


Assuntos
Gânglios Espinais , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios , Vincristina , Animais , Vincristina/toxicidade , Vincristina/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Camundongos Knockout , Tetrodotoxina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Antineoplásicos Fitogênicos/toxicidade , Técnicas de Patch-Clamp
10.
Nature ; 568(7752): 336-343, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30996318

RESUMO

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.


Assuntos
Autopsia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Circulação Cerebrovascular , Microcirculação , Suínos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Sobrevivência Celular , Artérias Cerebrais/fisiologia , Modelos Animais de Doenças , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/patologia , Inflamação/metabolismo , Inflamação/patologia , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Perfusão , Traumatismo por Reperfusão/prevenção & controle , Suínos/sangue , Sinapses/metabolismo , Sinapses/patologia , Fatores de Tempo , Vasodilatação
11.
Proc Natl Acad Sci U S A ; 119(38): e2119630119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095216

RESUMO

Trigeminal neuralgia (TN) is a unique pain disorder characterized by intense paroxysmal facial pain within areas innervated by the trigeminal nerve. Although most cases of TN are sporadic, familial clusters of TN suggest that genetic factors may contribute to this disorder. Whole-exome sequencing in patients with TN reporting positive family history demonstrated a spectrum of variants of ion channels including TRP channels. Here, we used patch-clamp analysis and Ca2+ and Na+ imaging to assess a rare variant in the TRPM7 channel, p.Ala931Thr, within transmembrane domain 3, identified in a man suffering from unilateral TN. We showed that A931T produced an abnormal inward current carried by Na+ and insensitive to the pore blocker Gd3+. Hypothesizing that replacement of the hydrophobic alanine at position 931 with the more polar threonine destabilizes a hydrophobic ring, near the voltage sensor domain, we performed alanine substitutions of F971 and W972 and obtained results suggesting a role of A931-W972 hydrophobic interaction in S3-S4 hydrophobic cleft stability. Finally, we transfected trigeminal ganglion neurons with A931T channels and observed that expression of this TRPM7 variant lowers current threshold and resting membrane potential, and increases evoked firing activity in TG neurons. Our results support the notion that the TRPM7-A931T mutation located in the S3 segment at the interface with the transmembrane region S4, generates an omega current that carries Na+ influx in physiological conditions. A931T produces hyperexcitability and a sustained Na+ influx in trigeminal ganglion neurons that may underlie pain in this kindred with trigeminal neuralgia.


Assuntos
Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM , Gânglio Trigeminal , Neuralgia do Trigêmeo , Alanina/genética , Humanos , Masculino , Mutação , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Gânglio Trigeminal/fisiopatologia , Neuralgia do Trigêmeo/genética
12.
Mol Pharmacol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164111

RESUMO

The patch-clamp technique has been the gold standard for analysis of excitable cells. Since its development in the 1980s it has contributed immensely to our understanding of neurons, muscle cells, and cardiomyocytes, and the ion channels and receptors that reside within them. This technique, predicated on Ohm's law, enables precise measurements of macroscopic excitability patterns, and ionic and gating conductances that can be assessed even down to the single channel level. Over the years, patch-clamp electrophysiology has undergone extensive modifications, with the introduction of new applications that have enhanced its power and reach. The most recent evolution of this technique occurred with the introduction of robotic high throughput automated platforms that enable high quality simultaneous recordings, in both voltage- and current-clamp modes, from 10s to 100s of cells, including cells freshly isolated from their native tissues. Combined with new dynamic-clamp applications, these new methods provide increasingly powerful tools for studying the contributions of ion channels and receptors to electrogenesis. In this brief review, we provide an overview of these enhanced patch-clamp techniques, followed by some of the applications presently being pursued, and a perspective into the potential future of the patch-clamp method. Significance Statement The patch-clamp technique, introduced in the 1980s, has revolutionized understanding of electrogenesis. Predicated on Ohm's law, this approach facilitates exploration of ionic conductances, gating mechanisms of ion channels and receptors, and their roles in neuronal, muscular, and cardiac excitability. Robotic platforms for high-throughput patch-clamp, and dynamic-clamp, have recently expanded its reach. Here, we outline new advances in patch-clamp including high throughput analysis of freshly-isolated neurons, and discuss the increasingly powerful trajectory of new patch-clamp techniques.

13.
J Physiol ; 602(19): 5061-5081, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39231098

RESUMO

Hyperreflexia associated with spasticity is a prevalent neurological condition characterized by excessive and exaggerated reflex responses to stimuli. Hyperreflexia can be caused by several diseases including multiple sclerosis, stroke and spinal cord injury (SCI). Although we have previously identified the contribution of the RAC1-PAK1 pathway underlying spinal hyperreflexia with SCI-induced spasticity, a feasible druggable target has not been validated. To assess the utility of targeting PAK1 to attenuate H-reflex hyperexcitability, we administered Romidepsin, a clinically available PAK1 inhibitor, in Thy1-YFP reporter mice. We performed longitudinal EMG studies with a study design that allowed us to assess pathological H-reflex changes and drug intervention effects over time, before and after contusive SCI. As expected, our results show a significant loss of rate-dependent depression - an indication of hyperreflexia and spasticity - 1 month following SCI as compared with baseline, uninjured controls (or before injury). Romidepsin treatment reduced signs of hyperreflexia in comparison with control cohorts and in pre- and post-drug intervention in SCI animals. Neuroanatomical study further confirmed drug response, as romidepsin treatment also reduced the presence of SCI-induced dendritic spine dysgenesis on α-motor neurons. Taken together, our findings extend previous work demonstrating the utility of targeting PAK1 activity in SCI-induced spasticity and support the novel use of romidepsin as an effective tool for managing spasticity. KEY POINTS: PAK1 plays a role in contributing to the development of spinal cord injury (SCI)-induced spasticity by contributing to dendritic spine dysgenesis. In this study, we explored the preclinical utility of inhibiting PAK1 to reduce spasticity and dendritic spine dysgenesis in an SCI mouse model. Romidepsin is a PAK1 inhibitor approved in the US in 2009 for the treatment of cutaneous T-cell lymphoma. Here we show that romidepsin treatment after SCI reduced SCI-induced H-reflex hyperexcitability and abnormal α-motor neuron spine morphology. This study provides compelling evidence that romidepsin may be a promising therapeutic approach for attenuating SCI-induced spasticity.


Assuntos
Depsipeptídeos , Reflexo H , Traumatismos da Medula Espinal , Quinases Ativadas por p21 , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Depsipeptídeos/farmacologia , Camundongos , Reflexo H/efeitos dos fármacos , Feminino , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Espasticidade Muscular/fisiopatologia , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Masculino
14.
J Biol Chem ; 299(1): 102816, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539035

RESUMO

Neuronal function relies on the maintenance of appropriate levels of various ion channels at the cell membrane, which is accomplished by balancing secretory, degradative, and recycling pathways. Neuronal function further depends on membrane specialization through polarized distribution of specific proteins to distinct neuronal compartments such as axons. Voltage-gated sodium channel NaV1.7, a threshold channel for firing action potentials in nociceptors, plays a major role in human pain, and its abundance in the plasma membrane is tightly regulated. We have recently characterized the anterograde axonal trafficking of NaV1.7 channels in Rab6A-positive vesicles, but the fate of internalized channels is not known. Membrane proteins that have undergone endocytosis can be directed into multiple pathways including those for degradation, recycling to the membrane, and transcytosis. Here, we demonstrate NaV1.7 endocytosis and dynein-dependent retrograde trafficking in Rab7-containing late endosomes together with other axonal membrane proteins using real-time imaging of live neurons. We show that some internalized NaV1.7 channels are delivered to lysosomes within the cell body, and that there is no evidence for NaV1.7 transcytosis. In addition, we show that NaV1.7 is recycled specifically to the axonal membrane as opposed to the soma membrane, suggesting a novel mechanism for the development of neuronal polarity. Together, these results shed light on the mechanisms by which neurons maintain excitable membranes and may inform efforts to target ion channel trafficking for the treatment of disorders of excitability.


Assuntos
Axônios , Canal de Sódio Disparado por Voltagem NAV1.7 , Células Receptoras Sensoriais , Humanos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
15.
Brain ; 146(1): 359-371, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35088838

RESUMO

Effective treatment of pain remains an unmet healthcare need that requires new and effective therapeutic approaches. NaV1.7 has been genetically and functionally validated as a mediator of pain. Preclinical studies of NaV1.7-selective blockers have shown limited success and translation to clinical studies has been limited. The degree of NaV1.7 channel blockade necessary to attenuate neuronal excitability and ameliorate pain is an unanswered question important for drug discovery. Here, we utilize dynamic clamp electrophysiology and induced pluripotent stem cell-derived sensory neurons (iPSC-SNs) to answer this question for inherited erythromelalgia, a pain disorder caused by gain-of-function mutations in Nav1.7. We show that dynamic clamp can produce hyperexcitability in iPSC-SNs associated with two different inherited erythromelalgia mutations, NaV1.7-S241T and NaV1.7-I848T. We further show that blockade of approximately 50% of NaV1.7 currents can reverse neuronal hyperexcitability to baseline levels.


Assuntos
Eritromelalgia , Humanos , Eritromelalgia/genética , Eritromelalgia/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Mutação/genética , Dor , Células Receptoras Sensoriais , Gânglios Espinais
16.
Brain ; 146(7): 3049-3062, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730021

RESUMO

Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.


Assuntos
MicroRNAs , Neuralgia , Humanos , RNA Mensageiro , Neuralgia/genética , Neuralgia/metabolismo , Epiderme/metabolismo , MicroRNAs/genética , Células Epidérmicas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
17.
J Neurosci ; 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35589395

RESUMO

Neuronal excitability relies on coordinated action of functionally distinct ion channels. Voltage-gated sodium (NaV) and potassium (KV) channels have distinct but complementary roles in firing action potentials: NaV channels provide depolarizing current while KV channels provide hyperpolarizing current. Mutations and dysfunction of multiple NaV and KV channels underlie disorders of excitability, including pain and epilepsy. Modulating ion channel trafficking may offer a potential therapeutic strategy for these diseases. A fundamental question, however, is whether these channels with distinct functional roles are transported independently or packaged together in the same vesicles in sensory axons. We have used Optical Pulse-Chase Axonal Long-distance (OPAL) imaging to investigate trafficking of NaV and KV channels and other axonal proteins from distinct functional classes in live rodent sensory neurons (from male and female rats). We show that, similar to NaV1.7 channels, NaV1.8 and KV7.2 channels are transported in Rab6a-positive vesicles, and that each of the NaV channel isoforms expressed in healthy, mature sensory neurons - NaV1.6, NaV1.7, NaV1.8, and NaV1.9 - are co-transported in the same vesicles. Further, we show that multiple axonal membrane proteins with different physiological functions - NaV1.7, KV7.2, and TNFR1 - are co-transported in the same vesicles. However, vesicular packaging of axonal membrane proteins is not indiscriminate, since another axonal membrane protein - NCX2 - is transported in separate vesicles. These results shed new light on the development and organization of sensory neuron membranes, revealing complex sorting of axonal proteins with diverse physiological functions into specific transport vesicles.Significance StatementNormal neuronal excitability is dependent on precise regulation of membrane proteins including NaV and KV channels, and imbalance in the level of these channels at the plasma membrane could lead to excitability disorders. Ion channel trafficking could potentially be targeted therapeutically, which would require better understanding of the mechanisms underlying trafficking of functionally diverse channels. Optical Pulse-chase Axonal Long-distance (OPAL) imaging in live neurons permitted examination of the specificity of ion channel trafficking, revealing co-packaging of axonal proteins with opposing physiological functions into the same transport vesicles. This suggests that additional trafficking mechanisms are necessary to regulate levels of surface channels and reveals an important consideration for therapeutic strategies that target ion channel trafficking for the treatment of excitability disorders.

18.
J Physiol ; 601(23): 5341-5366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846879

RESUMO

We show here that hyperpolarization-activated current (Ih ) unexpectedly acts to inhibit the activity of dorsal root ganglion (DRG) neurons expressing WT Nav1.7, the largest inward current and primary driver of DRG neuronal firing, and hyperexcitable DRG neurons expressing a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain. In this study we created a kinetic model of Ih and used it, in combination with dynamic-clamp, to study Ih function in DRG neurons. We show, for the first time, that Ih increases rheobase and reduces the firing probability in small DRG neurons, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . Our results show that Ih , due to slow gating, is not deactivated during action potentials (APs) and has a striking damping action, which reverses from depolarizing to hyperpolarizing, close to the threshold for AP generation. Moreover, we show that Ih reverses the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. In the aggregate, our results show that Ih unexpectedly has strikingly different effects in DRG neurons as compared to previously- and well-studied cardiac cells. Within DRG neurons where Nav1.7 is present, Ih reduces depolarizing sodium current inflow due to enhancement of Nav1.7 channel fast inactivation and creates additional damping action by reversal of Ih direction from depolarizing to hyperpolarizing close to the threshold for AP generation. These actions of Ih limit the firing of DRG neurons expressing WT Nav1.7 and reverse the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. KEY POINTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the molecular determinants of hyperpolarization-activated current (Ih ) have been characterized as a 'pain pacemaker', and thus considered to be a potential molecular target for pain therapeutics. Dorsal root ganglion (DRG) neurons express Nav1.7, a channel that is not present in central neurons or cardiac tissue. Gain-of-function mutations (GOF) of Nav1.7 identified in inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, produce DRG neuron hyperexcitability, which in turn produces severe pain. We found that Ih increases rheobase and reduces firing probability in small DRG neurons expressing WT Nav1.7, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . We also demonstrate that Ih reverses the hyperexcitability of DRG neurons expressing a GOF Nav1.7 mutation (L858H) that causes IEM. Our results show that, in contrast to cardiac cells and CNS neurons, Ih acts to stabilize DRG neuron excitability and prevents excessive firing.


Assuntos
Eritromelalgia , Neuralgia , Animais , Humanos , Eritromelalgia/genética , Nociceptores , Roedores , Gânglios Espinais/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neuralgia/genética , Neurônios/fisiologia , Potenciais de Ação
19.
J Neurophysiol ; 130(5): 1358-1366, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877184

RESUMO

Spasticity is a chronic neurological complication associated with spinal cord injury (SCI), characterized by increased muscle tone and stiffness. A physiological sign of spasticity is hyperreflexia, evident by the loss of evoked rate-dependent depression (RDD) in the H-reflex. Although previous work has shown that SCI-induced astrogliosis contributes to hyperexcitability disorders, including neuropathic pain and spasticity, it is unclear how reactive astrocytes can modulate synaptic transmission within the injured spinal cord. To study astrocytes' role in post-SCI hyperreflexia, we examined glutamate transporter-1 (GLT-1) and postsynaptic density protein 95 (PSD-95) proteins in astrocytes and neurons, respectively, within the ventral horn (lamina IX) below the level of injury (spinal segment L4-5). The close juxtaposition of GLT-1 and PSD-95 markers is a molecular correlate of tripartite synapses and is thought to be a key element in the astrocyte-induced plasticity of neuronal synapses. Our study compared animals with and without SCI-induced hyperreflexia and spasticity and investigated potential synaptic abnormalities associated with astrocyte involvement. As expected, 4 wk after SCI, we observed a loss in evoked H-reflex RDD in hindlimb electromyogram recordings, i.e., hyperreflexia, in contrast to uninjured sham. Importantly, our main findings show a significant increase in the presence of GLT-1-PSD-95 tripartite synapses in the ventral spinal cord motor regions of animals exhibiting SCI-induced hyperreflexia. Taken together, our study suggests the involvement of astrocyte-neuron synaptic complexes in the plasticity-driven progression of chronic spasticity.NEW & NOTEWORTHY The role of astrocytes in H-reflex hyperexcitability following SCI remains understudied. Our findings establish a relationship between GLT-1 expression, its proximity to neuronal PSD-95 in the spinal cord ventral horn, and the loss of H-reflex RDD, i.e., hyperreflexia. Our findings provide a new perspective on synaptic alterations and the development of SCI-related spasticity.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Animais , Astrócitos/metabolismo , Reflexo Anormal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Neurônios Motores/fisiologia , Sinapses/metabolismo
20.
J Neurophysiol ; 129(3): 609-618, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722722

RESUMO

Despite extensive study, the mechanisms underlying pain after axonal injury remain incompletely understood. Pain after corneal refractive surgery provides a model, in humans, of the effect of injury to trigeminal afferent nerves. Axons of trigeminal ganglion neurons that innervate the cornea are transected by laser-assisted in situ keratomileusis (LASIK). Although most patients do not experience postoperative pain, a small subgroup develop persistent ocular pain. We previously carried out genomic analysis and determined that some patients with persistent pain after axotomy of corneal axons during refractive surgery carry mutations in genes that encode the electrogenisome of trigeminal ganglion neurons, the ensemble of ion channels and receptors that regulate excitability within these cells, including SCN9A, which encodes sodium channel Nav1.7, a threshold channel abundantly expressed in sensory neurons that has been implicated in a number of pain-related disorders. Here, we describe the biophysical and electrophysiological profiling of the P610T Nav1.7 mutation found in two male siblings with persistent ocular pain after refractive surgery. Our results indicate that this mutation impairs the slow inactivation of Nav1.7. As expected from this proexcitatory change in channel function, we also demonstrate that this mutation produces increased spontaneous activity in trigeminal ganglion neurons. These findings suggest that this gain-of-function mutation in Nav1.7 may contribute to pain after injury to the axons of trigeminal ganglion neurons.NEW & NOTEWORTHY Mechanisms underlying pain after axonal injury remain elusive. A small subgroup of patients experience pain after corneal refractive surgery, providing a human pain model after well-defined injury to axons. Here we analyze a mutation (P610T) in Nav1.7, a threshold sodium channel expressed in nociceptors, found in two siblings with persistent ocular pain after refractive surgery. We show that it impairs channel slow inactivation, thereby triggering inappropriate repetitive activity in trigeminal ganglion axons that signal eye pain.


Assuntos
Dor Ocular , Irmãos , Humanos , Masculino , Axônios , Córnea , Gânglios Espinais , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neurônios/fisiologia , Dor
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa