Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(14): 6944-6953, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877253

RESUMO

Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.


Assuntos
Células Eucarióticas , Reconhecimento Automatizado de Padrão , Peptídeos/genética , Análise de Sequência de Proteína , Peptídeos/química , Estrutura Secundária de Proteína
2.
J Shoulder Elbow Surg ; 20(3): 461-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21118750

RESUMO

BACKGROUND: The repetitive overhand throwing can potentially cause physiologic or pathologic changes in musculoskeletal and vascular structures. The purpose of this study was to investigate the effects of throwing on upper extremity arterial blood flow before and after a controlled pitching session. The hypothesis is that pitchers with physical signs of shoulder laxity would demonstrate differential changes in upper extremity blood flow as compared to those without laxity. METHODS: Eighteen professional male pitchers underwent a detailed shoulder physical evaluation, followed by a wrist/brachial index (WBI) vascular exam and a vascular ultrasound examination before and after a controlled throwing session. RESULTS: Following a 50-pitch workout, the WBI was significantly lower (0.79-0.86) in pitchers with laxity on exam versus no laxity (P < .05). For all pitchers, the average arterial volume flow increased from 234 ml/min to 482 ml/min after 50 pitches. Pitchers without physical signs of laxity had an average arterial volume flow increase of 115%, while the pitchers with laxity signs increased 35%. CONCLUSION: This study demonstrated a statistically significant decrease in arterial blood flow in the laxity group compared to the nonlaxity throwers.


Assuntos
Beisebol/fisiologia , Instabilidade Articular/fisiopatologia , Extremidade Superior/irrigação sanguínea , Adolescente , Adulto , Artéria Axilar/diagnóstico por imagem , Fenômenos Biomecânicos , Humanos , Masculino , Fluxo Sanguíneo Regional , Artéria Subclávia/diagnóstico por imagem , Ultrassonografia Doppler Dupla , Adulto Jovem
3.
Front Immunol ; 11: 1873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013838

RESUMO

Antimicrobial compounds first arose in prokaryotes by necessity for competitive self-defense. In this light, prokaryotes invented the first host defense peptides. Among the most well-characterized of these peptides are class II bacteriocins, ribosomally-synthesized polypeptides produced chiefly by Gram-positive bacteria. In the current study, a tensor search protocol-the BACIIα algorithm-was created to identify and classify bacteriocin sequences with high fidelity. The BACIIα algorithm integrates a consensus signature sequence, physicochemical and genomic pattern elements within a high-dimensional query tool to select for bacteriocin-like peptides. It accurately retrieved and distinguished virtually all families of known class II bacteriocins, with an 86% specificity. Further, the algorithm retrieved a large set of unforeseen, putative bacteriocin peptide sequences. A recently-developed machine-learning classifier predicted the vast majority of retrieved sequences to induce negative Gaussian curvature in target membranes, a hallmark of antimicrobial activity. Prototypic bacteriocin candidate sequences were synthesized and demonstrated potent antimicrobial efficacy in vitro against a broad spectrum of human pathogens. Therefore, the BACIIα algorithm expands the scope of prokaryotic host defense bacteriocins and enables an innovative bioinformatics discovery strategy. Understanding how prokaryotes have protected themselves against microbial threats over eons of time holds promise to discover novel anti-infective strategies to meet the challenge of modern antibiotic resistance.


Assuntos
Bacteriocinas , Biologia Computacional/métodos , Aprendizado de Máquina , Bacteriocinas/química , Bacteriocinas/classificação , Bacteriocinas/genética
4.
Chem Inform ; 3(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29795804

RESUMO

Availability of high-throughput screening (HTS) data in the public domain offers great potential to foster development of ligand-based computer-aided drug discovery (LB-CADD) methods crucial for drug discovery efforts in academia and industry. LB-CADD method development depends on high-quality HTS assay data, i.e., datasets that contain both active and inactive compounds. These active compounds are hits from primary screens that have been tested in concentration-response experiments and where the target-specificity of the hits has been validated through suitable secondary screening experiments. Publicly available HTS repositories such as PubChem often provide such data in a convoluted way: compounds that are classified as inactive need to be extracted from the primary screening record. However, compounds classified as active in the primary screening record are not suitable as a set of active compounds for LB-CADD experiments due to high false-positive rate. A suitable set of actives can be derived by carefully analysing results in often up to five or more assays that are used to confirm and classify the activity of compounds. These assays, in part, build on each other. However, often not all hit compounds from the previous screen have been tested. Sometimes a compound can be classified as 'active', though its meaning is 'inactive' on the target of interest as it is 'active' on a different target protein. Here, a curation process of hierarchically related confirmatory screens is illustrated based on two specifically chosen protein use-cases. The subsequent re-upload procedure into PubChem is described for the findings of those two scenarios. Further, we provide nine publicly accessible high quality datasets for future LB-CADD method development that provide a common baseline for comparison of future methods to the scientific community. We also provide a protocol researchers can follow to upload additional datasets for benchmarking.

5.
J Biomol Screen ; 16(9): 995-1006, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21859680

RESUMO

Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (ß-catenin and Axin) in opposing fashion. We have now fused ß-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts.


Assuntos
Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proteína Axina/metabolismo , Ensaios Enzimáticos , Flavonas/farmacologia , Células HEK293 , Células HeLa , Humanos , Luciferases/metabolismo , Reprodutibilidade dos Testes , Xenopus laevis/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa