Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(6): 875-887, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34605899

RESUMO

MicroRNAs (miRNAs) are small post-transcriptional regulators that offer promising targets for treating complex diseases. To this end, hsa-miR-4513 is an excellent candidate as this gene harbors within its conserved heptametrical seed sequence a frequent polymorphism (rs2168518), which has previously been associated with several complex phenotypes. So far, little is known about the biological mechanism(s) underlying these associations. In an initial step, we now aimed to identify allele-specific target genes of hsa-miR-4513. We performed RNA sequencing in a miRNA overexpression model in human umbilical vein endothelial cells transfected with separated hsa-miR-4513 alleles at rs2168518, namely hsa-miR-4513-G and hsa-miR-4513-A. Genes specifically regulated by the rs2168518 alleles were independently verified by quantitative reverse transcription PCR (qRT-PCR), western blot analysis and allele-specific miRNA binding via a luciferase reporter assay. By a text-based search publicly available databases such as Online Mendelian Inheritance in Man and Mouse Genome Informatics were utilized to link target genes of hsa-miR-4513 to previously described phenotypes. Overall, we identified 23 allele-specific hsa-miR-4513 target genes and replicated 19 of those independently via qRT-PCR. Western blot analysis and luciferase reporter assays conducted for an exemplary subsample further confirmed the allele-specific regulation of these genes by hsa-miR-4513. Remarkably, multiple allele-specific target genes identified are linked via text retrieval to several phenotypes previously reported to be associated with hsa-miR-4513. These genes offer promising candidates for ongoing research on the functional pathobiological impact of hsa-miR-4513 and its seed polymorphism rs2168518. This could give rise to therapeutic applications targeting this miRNA.


Assuntos
Células Endoteliais , MicroRNAs , Alelos , Animais , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , MicroRNAs/metabolismo
2.
J Neuroinflammation ; 21(1): 33, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273366

RESUMO

Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Neuroglia/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Retina/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256041

RESUMO

The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.


Assuntos
Caricaceae , Transtorno Depressivo Maior , Humanos , Astrócitos , Depressão , Mitocôndrias , Neurônios , Fibroblastos , Mitomicina
4.
Cell Mol Life Sci ; 79(8): 448, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876901

RESUMO

The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.


Assuntos
Proteínas do Olho , Retinosquise , Animais , Proteínas do Olho/genética , Masculino , Mamíferos/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Potássio/metabolismo , Retinosquise/genética , Retinosquise/metabolismo , Retinosquise/patologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
5.
PLoS Genet ; 16(9): e1008934, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32870927

RESUMO

Significant association signals from genome-wide association studies (GWAS) point to genomic regions of interest. However, for most loci the causative genetic variant remains undefined. Determining expression quantitative trait loci (eQTL) in a disease relevant tissue is an excellent approach to zoom in on disease- or trait-associated association signals and hitherto on relevant disease mechanisms. To this end, we explored regulation of gene expression in healthy retina (n = 311) and generated the largest cis-eQTL data set available to date. Genotype- and RNA-Seq data underwent rigorous quality control protocols before FastQTL was applied to assess the influence of genetic markers on local (cis) gene expression. Our analysis identified 403,151 significant eQTL variants (eVariants) that regulate 3,007 genes (eGenes) (Q-Value < 0.05). A conditional analysis revealed 744 independent secondary eQTL signals for 598 of the 3,007 eGenes. Interestingly, 99,165 (24.71%) of all unique eVariants regulate the expression of more than one eGene. Filtering the dataset for eVariants regulating three or more eGenes revealed 96 potential regulatory clusters. Of these, 31 harbour 130 genes which are partially regulated by the same genetic signal. To correlate eQTL and association signals, GWAS data from twelve complex eye diseases or traits were included and resulted in identification of 80 eGenes with potential association. Remarkably, expression of 10 genes is regulated by eVariants associated with multiple eye diseases or traits. In conclusion, we generated a unique catalogue of gene expression regulation in healthy retinal tissue and applied this resource to identify potentially pleiotropic effects in highly prevalent human eye diseases. Our study provides an excellent basis to further explore mechanisms of various retinal disease etiologies.


Assuntos
Retina/metabolismo , Retina/fisiologia , Doenças Retinianas/genética , Autopsia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Voluntários Saudáveis , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
6.
Exp Eye Res ; 225: 109248, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108770

RESUMO

Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.


Assuntos
Degeneração Macular , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Proteínas do Sistema Complemento/metabolismo , Corioide/metabolismo , Proteínas/genética , Genômica , Polimorfismo de Nucleotídeo Único , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética
7.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682771

RESUMO

Anti-VEGF treatment for neovascular age-related macular degeneration (nAMD) has been FDA-approved in 2004, and since then has helped tens of thousands of patients worldwide to preserve vision. Still, treatment responses vary widely, emphasizing the need for genetic biomarkers to robustly separate responders from non-responders. Here, we report the findings of an observational study compromising 179 treatment-naïve nAMD patients and their reaction to treatment after three monthly doses of anti-VEGF antibodies. We show that established criteria of treatment response such as visual acuity and central retinal thickness successfully divides our cohort into 128 responders and 51 non-responders. Nevertheless, retinal thickness around the fovea revealed significant reaction to treatment even in the formally categorized non-responders. To elucidate genetic effects underlying our criteria, we conducted an undirected genome-wide association study followed by a directed replication study of 30 previously reported genetic variants. Remarkably, both approaches failed to result in significant findings, suggesting study-specific effects were confounding the present and previous discovery studies. Of note, all studies so far are greatly underpowered, hampering interpretation of genetic findings. In consequence, we highlight the need for an extensive phenotyping study with sample sizes exceeding at least 15,000 to reliably assess anti-VEGF treatment responses in nAMD.


Assuntos
Estudo de Associação Genômica Ampla , Degeneração Macular , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Humanos , Injeções Intravítreas , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Ranibizumab/uso terapêutico , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Fatores de Crescimento do Endotélio Vascular
8.
Proc Natl Acad Sci U S A ; 115(19): E4433-E4442, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686068

RESUMO

Structural variation and single-nucleotide variation of the complement factor H (CFH) gene family underlie several complex genetic diseases, including age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (AHUS). To understand its diversity and evolution, we performed high-quality sequencing of this ∼360-kbp locus in six primate lineages, including multiple human haplotypes. Comparative sequence analyses reveal two distinct periods of gene duplication leading to the emergence of four CFH-related (CFHR) gene paralogs (CFHR2 and CFHR4 ∼25-35 Mya and CFHR1 and CFHR3 ∼7-13 Mya). Remarkably, all evolutionary breakpoints share a common ∼4.8-kbp segment corresponding to an ancestral CFHR gene promoter that has expanded independently throughout primate evolution. This segment is recurrently reused and juxtaposed with a donor duplication containing exons 8 and 9 from ancestral CFH, creating four CFHR fusion genes that include lineage-specific members of the gene family. Combined analysis of >5,000 AMD cases and controls identifies a significant burden of a rare missense mutation that clusters at the N terminus of CFH [P = 5.81 × 10-8, odds ratio (OR) = 9.8 (3.67-Infinity)]. A bipolar clustering pattern of rare nonsynonymous mutations in patients with AMD (P < 10-3) and AHUS (P = 0.0079) maps to functional domains that show evidence of positive selection during primate evolution. Our structural variation analysis in >2,400 individuals reveals five recurrent rearrangement breakpoints that show variable frequency among AMD cases and controls. These data suggest a dynamic and recurrent pattern of mutation critical to the emergence of new CFHR genes but also in the predisposition to complex human genetic disease phenotypes.


Assuntos
Evolução Molecular , Degeneração Macular/genética , Degeneração Macular/patologia , Mutação , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Fator H do Complemento/genética , Éxons , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Família Multigênica , Fenótipo , Primatas , Fatores de Risco
9.
Genet Epidemiol ; 43(5): 559-576, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31016765

RESUMO

While current genome-wide association analyses often rely on meta-analysis of study-specific summary statistics, individual participant data (IPD) from multiple studies increase options for modeling. When multistudy IPD is available, however, it is unclear whether this data is to be imputed and modeled across all participants (mega-imputation and mega-analysis) or study-specifically (meta-imputation and meta-analysis). Here, we investigated different approaches toward imputation and analysis using 52,189 subjects from 25 studies of the International Age-related Macular Degeneration (AMD) Genomics Consortium including, 16,144 AMD cases and 17,832 controls for association analysis. From 27,448,454 genetic variants after 1,000-Genomes-based imputation, mega-imputation yielded ~400,000 more variants with high imputation quality (mostly rare variants) compared to meta-imputation. For AMD signal detection (P < 5 × 10-8 ) in mega-imputed data, most loci were detected with mega-analysis without adjusting for study membership (40 loci, including 34 known); we considered these loci genuine, since genetic effects and P-values were comparable across analyses. In meta-imputed data, we found 31 additional signals, mostly near chromosome tails or reference panel gaps, which disappeared after accounting for interaction of whole-genome amplification (WGA) with study membership or after excluding studies with WGA-participants. For signal detection with multistudy IPD, we recommend mega-imputation and mega-analysis, with meta-imputation followed by meta-analysis being a computationally appealing alternative.


Assuntos
Predisposição Genética para Doença , Degeneração Macular/genética , Cromossomos Humanos Par 5/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
10.
Hum Mol Genet ; 27(9): 1630-1641, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668979

RESUMO

Mutations in bestrophin-1 (BEST1) are associated with distinct retinopathies, notably three forms with autosomal dominant inheritance and one condition with an autosomal recessive mode of transmission. The molecular mechanisms underlying their distinct retinal phenotypes are mostly unknown. Although heterozygous missense mutations in BEST1 reveal dominant-negative effects in patients with autosomal dominant Best disease (BD), heterozygous mutations associated with autosomal recessive bestrophinopathy (ARB) display no disease phenotype. Here we show that the recessive mutations trigger a strong and fast protein degradation process in the endoplasmic reticulum (ER), thereby favoring a decreased stoichiometry of mutant versus normal BEST1 subunits in the assembly of the homo-pentameric BEST1 chloride channel. In contrast, dominant mutations escape ER-associated degradation and are subjected to a slightly delayed post-ER degradation via the endo-lysosomal degradation pathway. As a result, increased formation of a non-functional BEST1 channel occurs due to a roughly equimolar incorporation of normal and mutant BEST1 subunits into the channel complex. Taken together, our data provide insight into the molecular pathways of dominantly and recessively acting BEST1 missense mutations suggesting that the site of subcellular protein quality control as well as the rate and degree of mutant protein degradation are ultimately responsible for the distinct retinal disease phenotypes in BD and ARB.


Assuntos
Bestrofinas/metabolismo , Retículo Endoplasmático/metabolismo , Oftalmopatias Hereditárias/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Algoritmos , Animais , Bestrofinas/genética , Linhagem Celular , Cães , Retículo Endoplasmático/genética , Oftalmopatias Hereditárias/genética , Humanos , Mutação de Sentido Incorreto/genética , Fenilbutiratos , Estabilidade Proteica , Doenças Retinianas/genética , Temperatura
11.
Hum Genet ; 139(3): 401-407, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31134332

RESUMO

The extent of aneuploidy of the sex chromosomes increases with age in human leukocytes. Here, we re-explore the dynamics of normal loss of the Y chromosome (LOY) with age based on microarray data using two exponential models and two different ways to estimate the fraction of LOY. This analysis shows the existence of a significant correlation between the fraction of LOY estimated from molecular cytogenetics and genotyping microarray data. Although the specific estimates of the parameters for the two exponential models are different from those derived from cytogenetics data, the present analysis in an independent dataset of normal individuals confirms that X0 cells have a selective advantage over XY cells. Moreover, patients with age-related macular degeneration display higher fraction of LOY values and seem to have a predisposition to lose their Y chromosome even at young ages compared to control individuals. As there are no data available for the same individuals at different time points, the parameters reported here are average values drawn from population analyses.


Assuntos
Envelhecimento/genética , Cromossomos Humanos Y/genética , Degeneração Macular/genética , Aneuploidia , Deleção Cromossômica , Genótipo , Humanos , Leucócitos/fisiologia , Masculino
12.
Ophthalmology ; 127(2): 186-195, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474439

RESUMO

PURPOSE: Geographic atrophy (GA), a late stage of age-related macular degeneration (AMD), is a major cause of blindness. Even while central visual acuity remains relatively well preserved, GA often causes considerable compromise of visual function and quality of life. No treatment currently exists. We evaluated the safety and efficacy of pegcetacoplan, a complement C3 inhibitor, for treatment of GA. DESIGN: Prospective, multicenter, randomized, sham-controlled phase 2 study. PARTICIPANTS: Two hundred forty-six patients with GA. METHODS: Patients with GA were assigned randomly in a 2:2:1:1 ratio to receive intravitreal injections of 15 mg pegcetacoplan monthly or every other month (EOM) or sham intravitreal injections monthly or EOM for 12 months with follow-up at months 15 and 18. Area and growth of GA were measured using fundus autofluorescence imaging. MAIN OUTCOME MEASURES: The primary efficacy end point was mean change in square root GA lesion area from baseline to month 12. Secondary outcome measures included mean change from baseline in GA lesion area without the square root transformation, distance of GA lesion from the fovea, best-corrected visual acuity (BCVA), low-luminance BCVA, and low-luminance visual acuity deficit. The primary safety end point was the number and severity of treatment-emergent adverse events. RESULTS: In patients receiving pegcetacoplan monthly or EOM, the GA growth rate was reduced by 29% (95% confidence interval [CI], 9-49; P = 0.008) and 20% (95% CI, 0-40; P = 0.067) compared with the sham treatment group. Post hoc analysis showed that the effect was greater in the second 6 months of treatment, with observed reductions of 45% (P = 0.0004) and 33% (P = 0.009) for pegcetacoplan monthly and EOM, respectively. Two cases of culture-positive endophthalmitis and 1 case of culture-negative endophthalmitis occurred in the pegcetacoplan monthly group. New-onset investigator-determined exudative AMD was reported more frequently in pegcetacoplan-treated eyes (18/86 eyes [20.9%] and 7/79 eyes [8.9%] in monthly and EOM groups, respectively) than in sham-treated eyes (1/81 eyes [1.2%]). CONCLUSIONS: Local C3 inhibition with pegcetacoplan resulted in statistically significant reductions in the growth of GA compared with sham treatment. Phase 3 studies will define the efficacy and safety profile further.


Assuntos
Complemento C3/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Atrofia Geográfica/tratamento farmacológico , Degeneração Macular/complicações , Idoso , Idoso de 80 Anos ou mais , Feminino , Angiofluoresceinografia , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/etiologia , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
13.
Ophthalmic Res ; 63(2): 141-151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31927556

RESUMO

OBJECTIVE: We report on two German siblings diagnosed with congenital hypotrichosis and juvenile macular dystrophy, an extremely rare syndrome affecting both hair growth and visual functions. METHODS: A detailed ophthalmological examination was carried out including fundus examination, visual acuity assessment, visual field determination, color vision testing, and electrophysiology (electroretinography [ERG]). Additionally, fundus photography and autofluorescence imaging (FAF) was performed, along with optical coherence tomography (OCT) and adaptive optics (AO) fundus imaging. Targeted Sanger sequencing and next-generation gene panel sequencing were carried out. RESULTS: Macular dystrophy was evident in the fundus of both patients, as was a central scotoma in the static visual field. The kinetic visual field was normal. The ERG recordings were also normal, but the amplitudes of the multifocal ERG were reduced in the central 4-5° of the retina. The FAF images revealed a large central hypofluorescent area surrounded by a hyperfluorescent ring. The OCT images showed atrophy in the outer layers and tubulations. The AO images depicted a loss of central photoreceptors, as well as severe central atrophy in patient 1. A cone mosaic was observable in the peripheral AO fundus images of both patients. The disrupted cone mosaic on the AO images correlated with the hypofluorescent areas on autofluorescence. DNA testing identified the homozygous, likely pathogenic variant c.1508G>A/p.(Arg503His) (chr16:68719191) in the CDH3 gene. CONCLUSIONS: The two siblings revealed hypotrichosis and macular dystrophy in both eyes. The identification of a homozygous CDH3 mutation in each patient confirms the syndromic entity of hypotrichosis with juvenile macular degeneration.


Assuntos
Caderinas/genética , DNA/genética , Hipotricose/diagnóstico , Degeneração Macular/diagnóstico , Mutação , Células Fotorreceptoras Retinianas Cones/patologia , Acuidade Visual , Adolescente , Adulto , Caderinas/metabolismo , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Humanos , Hipotricose/congênito , Hipotricose/metabolismo , Degeneração Macular/genética , Degeneração Macular/fisiopatologia , Masculino , Irmãos , Tomografia de Coerência Óptica
14.
Int J Mol Sci ; 21(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294914

RESUMO

Choroidal neovascularization (CNV) is a pathological process in which aberrant blood vessels invade the subretinal space of the mammalian eye. It is a characteristic feature of the prevalent neovascular age-related macular degeneration (nAMD). Circulating microRNAs (cmiRNAs) are regarded as potentially valuable biomarkers for various age-related diseases, including nAMD. Here, we investigated cmiRNA expression in an established laser-induced CNV mouse model. Upon CNV induction in C57Bl/6 mice, blood-derived cmiRNAs were initially determined globally by RNA next generation sequencing, and the most strongly dysregulated cmiRNAs were independently replicated by quantitative reverse transcription PCR (RT-qPCR) in blood, retinal, and retinal pigment epithelium (RPE)/choroidal tissue. Our findings suggest that two miRNAs, mmu-mir-486a-5p and mmur-mir-92a-3p, are consistently dysregulated during CNV formation. Furthermore, in functional in vitro assays, a significant impact of mmu-mir-486a-5p and mmu-mir-92a-3p on murine microglial cell viability was observed, while mmu-mir-92a-3p also showed an impact on microglial mobility. Taken together, we report a robust dysregulation of two miRNAs in blood and RPE/choroid after laser-induced initiation of CNV lesions in mice, highlighting their potential role in pathology and eventual therapy of CNV-associated complications.


Assuntos
Neovascularização de Coroide/sangue , Neovascularização de Coroide/etiologia , MicroRNA Circulante/genética , Lasers/efeitos adversos , Animais , Células Cultivadas , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , MicroRNAs/genética , Microglia/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transcriptoma
15.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302512

RESUMO

Autosomal recessive bestrophinopathy (ARB) has been reported as clinically heterogeneous. Eighteen patients (mean age: 22.5 years; 15 unrelated families) underwent ophthalmological examination, fundus photography, fundus autofluorescence, and optical coherence tomography (OCT). Molecular genetic testing of the BEST1 gene was conducted by the chain-terminating dideoxynucleotide Sanger methodology. Onset of symptoms (3 to 50 years of age) and best-corrected visual acuity (0.02-1.0) were highly variable. Ophthalmoscopic and retinal imaging defined five phenotypes. Phenotype I presented with single or confluent yellow lesions at the posterior pole and midperiphery, serous retinal detachment, and intraretinal cystoid spaces. In phenotype II fleck-like lesions were smaller and extended to the far periphery. Phenotype III showed a widespread continuous lesion with sharp peripheral demarcation. Single (phenotype IV) or multifocal (phenotype V) vitelliform macular dystrophy-like lesions were observed as well. Phenotypes varied within families and in two eyes of one patient. In addition, OCT detected hyperreflective foci (13/36 eyes) and choroidal excavation (11/36). Biallelic mutations were identified in each patient, six of which have not been reported so far [c.454C>T/p.(Pro152Ser), c.620T>A/p.(Leu207His), c.287_298del/p.(Gln96_Asn99del), c.199_200del/p.(Leu67Valfs*164), c.524del/p.(Ser175Thrfs*19), c.590_615del/p.(Leu197Profs*26)]. BEST1-associated ARB presents with a variable age of onset and clinical findings, that can be categorized in 5 clinical phenotypes. Hyperreflective foci and choroidal excavation frequently develop as secondary manifestations.


Assuntos
Bestrofinas/genética , Oftalmopatias Hereditárias/genética , Fenótipo , Doenças Retinianas/genética , Adulto , Alelos , Criança , Pré-Escolar , Oftalmopatias Hereditárias/diagnóstico por imagem , Oftalmopatias Hereditárias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/patologia
16.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111077

RESUMO

Best vitelliform macular dystrophy (BD), autosomal dominant vitreoretinochoroidopathy (ADVIRC), and the autosomal recessive bestrophinopathy (ARB), together known as the bestrophinopathies, are caused by mutations in the bestrophin-1 (BEST1) gene affecting anion transport through the plasma membrane of the retinal pigment epithelium (RPE). To date, while no treatment exists a better understanding of BEST1-related pathogenesis may help to define therapeutic targets. Here, we systematically characterize functional consequences of mutant BEST1 in thirteen RPE patient cell lines differentiated from human induced pluripotent stem cells (hiPSCs). Both BD and ARB hiPSC-RPEs display a strong reduction of BEST1-mediated anion transport function compared to control, while ADVIRC mutations trigger an increased anion permeability suggesting a stabilized open state condition of channel gating. Furthermore, BD and ARB hiPSC-RPEs differ by the degree of mutant protein turnover and by the site of subcellular protein quality control with adverse effects on lysosomal pH only in the BD-related cell lines. The latter finding is consistent with an altered processing of catalytic enzymes in the lysosomes. The present study provides a deeper insight into distinct molecular mechanisms of the three bestrophinopathies facilitating functional categorization of the more than 300 known BEST1 mutations that result into the distinct retinal phenotypes.


Assuntos
Bestrofinas/genética , Bestrofinas/metabolismo , Oftalmopatias Hereditárias/genética , Mutação , Fenótipo , Doenças Retinianas/genética , Linhagem Celular , Doenças da Coroide/genética , Doenças da Coroide/metabolismo , Doenças da Coroide/patologia , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Genes Recessivos , Predisposição Genética para Doença/genética , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco Pluripotentes Induzidas , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/metabolismo , Distrofia Macular Viteliforme
17.
Klin Monbl Augenheilkd ; 237(3): 259-266, 2020 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-32120431

RESUMO

Bestrophin 1 (BEST1) encodes an integral membrane protein localized in the basolateral aspect of the retinal pigment epithelium. Mutations in BEST1 are associated with distinct retinal dystrophies, the so-called "bestrophinopathies", often causing visual impairment, even in early childhood. The clinical entities of the bestrophinopathies can be distinguished by phenotypic characteristics and mode of inheritance of the respective gene defect. While the autosomal dominant inheritance pattern with one altered copy of BEST1 is common, heterozygous carriers of the autosomal recessive bestrophinopathy are generally but not consistently symptom-free. This review highlights the significance of understanding the underlying molecular mechanisms that contribute to disease pathogenesis of autosomal dominant and autosomal recessive bestrophinopathies. This knowledge is deemed crucial and needs to be considered in future planning of treatment strategies.


Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Bestrofinas , Criança , Pré-Escolar , Canais de Cloreto/genética , Proteínas do Olho/genética , Humanos , Mutação
18.
Hum Mutat ; 40(10): 1749-1759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212395

RESUMO

PURPOSE: Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS: Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS: Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS: smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Análise Mutacional de DNA/métodos , Íntrons , Sondas Moleculares , Mutação , Doença de Stargardt/diagnóstico , Doença de Stargardt/genética , Alelos , Biologia Computacional , Éxons , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Linhagem , Splicing de RNA
19.
J Neuroinflammation ; 16(1): 43, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777091

RESUMO

BACKGROUND: Ligand-driven modulation of the mitochondrial translocator protein 18 kDa (TSPO) was recently described to dampen the neuroinflammatory response of microglia in a retinal light damage model resulting in protective effects on photoreceptors. We characterized the effects of the TSPO ligand XBD173 in the postischemic retina focusing on changes in the response pattern of the major glial cell types of the retina-microglia and Müller cells. METHODS: Retinal ischemia was induced by increasing the intraocular pressure for 60 min followed by reperfusion of the tissue in mice. On retinal cell types enriched via immunomagnetic separation expression analysis of TSPO, its ligand diazepam-binding inhibitor (DBI) and markers of glial activation were performed at transcript and protein level using RNA sequencing, qRT-PCR, lipid chromatography-mass spectrometry, and immunofluorescent labeling. Data on cell morphology and numbers were assessed in retinal slice and flatmount preparations. The retinal functional integrity was determined by electroretinogram recordings. RESULTS: We demonstrate that TSPO is expressed by Müller cells, microglia, vascular cells, retinal pigment epithelium (RPE) of the healthy and postischemic retina, but only at low levels in retinal neurons. While an alleviated neurodegeneration upon XBD173 treatment was found in postischemic retinae as compared to vehicle controls, this neuroprotective effect of XBD173 is mediated putatively by its action on retinal glia. After transient ischemia, TSPO as a marker of activation was upregulated to similar levels in microglia as compared to their counterparts in healthy retinae irrespective of the treatment regimen. However, less microglia were found in XBD173-treated postischemic retinae at 3 days post-surgery (dps) which displayed a more ramified morphology than in retinae of vehicle-treated mice indicating a dampened microglia activation. Müller cells, the major retinal macroglia, show upregulation of the typical gliosis marker GFAP. Importantly, glutamine synthetase was more stably expressed in Müller glia of XBD173-treated postischemic retinae and homeostatic functions such as cellular volume regulation typically diminished in gliotic Müller cells remained functional. CONCLUSIONS: In sum, our data imply that beneficial effects of XBD173 treatment on the postischemic survival of inner retinal neurons were primarily mediated by stabilizing neurosupportive functions of glial cells.


Assuntos
Isquemia/patologia , Purinas/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Neurônios Retinianos/efeitos dos fármacos , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Arginase/genética , Arginase/metabolismo , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica/fisiologia , Glutamato-Amônia Ligase/metabolismo , Isquemia/complicações , Isquemia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , RNA Mensageiro/metabolismo , Receptores de GABA/metabolismo , Retina/metabolismo , Retina/patologia , Doenças Retinianas/complicações , Neurônios Retinianos/classificação , Neurônios Retinianos/patologia , Rodopsina/metabolismo
20.
Genet Med ; 21(8): 1751-1760, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30643219

RESUMO

PURPOSE: Using exome sequencing, the underlying variants in many persons with autosomal recessive diseases remain undetected. We explored autosomal recessive Stargardt disease (STGD1) as a model to identify the missing heritability. METHODS: Sequencing of ABCA4 was performed in 8 STGD1 cases with one variant and p.Asn1868Ile in trans, 25 cases with one variant, and 3 cases with no ABCA4 variant. The effect of intronic variants was analyzed using in vitro splice assays in HEK293T cells and patient-derived fibroblasts. Antisense oligonucleotides were used to correct splice defects. RESULTS: In 24 of the probands (67%), one known and five novel deep-intronic variants were found. The five novel variants resulted in messenger RNA pseudoexon inclusions, due to strengthening of cryptic splice sites or by disrupting a splicing silencer motif. Variant c.769-784C>T showed partial insertion of a pseudoexon and was found in cis with c.5603A>T (p.Asn1868Ile), so its causal role could not be fully established. Variant c.4253+43G>A resulted in partial skipping of exon 28. Remarkably, antisense oligonucleotides targeting the aberrant splice processes resulted in (partial) correction of all splicing defects. CONCLUSION: Our data demonstrate the importance of assessing noncoding variants in genetic diseases, and show the great potential of splice modulation therapy for deep-intronic variants.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Oligonucleotídeos Antissenso/genética , Isoformas de Proteínas/genética , Doença de Stargardt/genética , Adolescente , Adulto , Idoso , Criança , Éxons/genética , Células HEK293 , Humanos , Íntrons/genética , Pessoa de Meia-Idade , Mutação/genética , Oligonucleotídeos Antissenso/farmacologia , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética , Doença de Stargardt/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa