Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(2): 135-144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932813

RESUMO

The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.


Assuntos
Ritmo Circadiano/imunologia , Inflamação/metabolismo , Neutrófilos/metabolismo , Pneumonia/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Degranulação Celular/imunologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação/imunologia , Camundongos , Neutrófilos/imunologia , Pneumonia/complicações , Pneumonia/imunologia , Proteoma/imunologia , Proteoma/metabolismo , Síndrome do Desconforto Respiratório/imunologia
2.
Immunity ; 56(10): 2325-2341.e15, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652021

RESUMO

Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages. Intravital imaging revealed a spatiotemporal macrophage niche across vascular beds alongside mural cells (MCs)-pericytes and smooth muscle cells. Single-cell transcriptomics, co-culture, and genetic deletion experiments revealed MC-derived expression of the chemokines CCL2 and MIF, which actively preserved macrophage survival and their homeostatic functions. In atherosclerosis, this positioned macrophages in viable plaque areas, away from the necrotic core, and maintained a homeostatic macrophage phenotype. Disruption of this MC-macrophage unit via MC-specific deletion of these chemokines triggered detrimental macrophage relocalizing, exacerbated plaque necrosis, inflammation, and atheroprogression. In line, CCL2 inhibition at advanced stages of atherosclerosis showed detrimental effects. This work presents a MC-driven safeguard toward maintaining the homeostatic vascular macrophage niche.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Macrófagos/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Necrose/metabolismo
3.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36272416

RESUMO

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Trombose , Humanos , Megacariócitos , Trombopoese , Neutrófilos , Plaquetas/fisiologia
4.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720451

RESUMO

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Assuntos
Glucagon/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Tri-Iodotironina/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Engenharia Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Glucagon/efeitos adversos , Glucagon/química , Glucagon/farmacologia , Hiperglicemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Tri-Iodotironina/efeitos adversos , Tri-Iodotironina/química , Tri-Iodotironina/farmacologia
5.
Nat Immunol ; 18(7): 753-761, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553950

RESUMO

Healthy individuals of African ancestry have neutropenia that has been linked with the variant rs2814778(G) of the gene encoding atypical chemokine receptor 1 (ACKR1). This polymorphism selectively abolishes the expression of ACKR1 in erythroid cells, causing a Duffy-negative phenotype. Here we describe an unexpected fundamental role for ACKR1 in hematopoiesis and provide the mechanism that links its absence with neutropenia. Nucleated erythroid cells had high expression of ACKR1, which facilitated their direct contact with hematopoietic stem cells. The absence of erythroid ACKR1 altered mouse hematopoiesis including stem and progenitor cells, which ultimately gave rise to phenotypically distinct neutrophils that readily left the circulation, causing neutropenia. Individuals with a Duffy-negative phenotype developed a distinct profile of neutrophil effector molecules that closely reflected the one observed in the ACKR1-deficient mice. Thus, alternative physiological patterns of hematopoiesis and bone marrow cell outputs depend on the expression of ACKR1 in the erythroid lineage, findings with major implications for the selection advantages that have resulted in the paramount fixation of the ACKR1 rs2814778(G) polymorphism in Africa.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Eritroblastos , Hematopoese , Células-Tronco Hematopoéticas , Neutropenia , Neutrófilos , Receptores de Superfície Celular , Animais , Humanos , Camundongos , População Negra/genética , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Microscopia Confocal , Neutropenia/genética , Neutrófilos/citologia , Neutrófilos/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
6.
Immunity ; 50(2): 390-402.e10, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30709741

RESUMO

Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.


Assuntos
Vasos Sanguíneos/imunologia , Ritmo Circadiano/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Animais , Vasos Sanguíneos/metabolismo , Candida albicans/imunologia , Candida albicans/fisiologia , Células Cultivadas , Senescência Celular/imunologia , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Fatores de Tempo
7.
Cell ; 153(5): 1025-35, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706740

RESUMO

Unique among leukocytes, neutrophils follow daily cycles of release from and migration back into the bone marrow, where they are eliminated. Because removal of dying cells generates homeostatic signals, we explored whether neutrophil elimination triggers circadian events in the steady state. Here, we report that the homeostatic clearance of neutrophils provides cues that modulate the physiology of the bone marrow. We identify a population of CD62L(LO) CXCR4(HI) neutrophils that have "aged" in the circulation and are eliminated at the end of the resting period in mice. Aged neutrophils infiltrate the bone marrow and promote reductions in the size and function of the hematopoietic niche. Modulation of the niche depends on macrophages and activation of cholesterol-sensing nuclear receptors and is essential for the rhythmic egress of hematopoietic progenitors into the circulation. Our results unveil a process that synchronizes immune and hematopoietic rhythms and expand the ascribed functions of neutrophils beyond inflammation. PAPERFLICK:


Assuntos
Medula Óssea/fisiologia , Ritmo Circadiano , Neutrófilos/citologia , Neutrófilos/fisiologia , Animais , Movimento Celular , Senescência Celular , Feminino , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Receptores Nucleares Órfãos/metabolismo
8.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
9.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30413362

RESUMO

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Assuntos
Sobrevivência de Enxerto/imunologia , Terapia de Imunossupressão , Inflamação/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Transplante de Órgãos , Aloenxertos , Animais , Biomarcadores , Proteína HMGB1/genética , Tolerância Imunológica , Imunidade Inata , Memória Imunológica , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Vimentina/genética
10.
Circ Res ; 132(11): 1546-1565, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228235

RESUMO

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Coração , Neurônios/fisiologia , Encéfalo
11.
Nature ; 569(7755): 236-240, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043745

RESUMO

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Assuntos
Aterosclerose/patologia , Morte Celular , Membrana Celular/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Porosidade , Animais , Artérias/patologia , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/patologia , Neutrófilos/citologia , Ligação Proteica/efeitos dos fármacos
12.
Basic Res Cardiol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554187

RESUMO

CD40L-CD40-TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L-CD40-TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L-CD40-TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L-CD40-TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.

13.
Blood ; 139(17): 2691-2705, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35313337

RESUMO

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Assuntos
Plaquetas , Trombose , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Plaquetas/metabolismo , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo
14.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572559

RESUMO

Innate myeloid cells especially neutrophils and their extracellular traps are known to promote intravascular coagulation and thrombosis formation in infections and various other conditions. Innate myeloid cell dependent fibrin formation can support systemic immunity while its dysregulation enhances the severity of infectious diseases. Less is known about the immune mechanisms preventing dysregulation of fibrin homeostasis in infection. During experimental systemic infections local fibrin deposits in the liver microcirculation cause rapid arrest of CD4+ T cells. Arrested T helper cells mostly represent Th17 cells that partially originate from the small intestine. Intravascular fibrin deposits activate mouse and human CD4+ T cells which can be mediated by direct fibrin - CD4+ T cell interactions. Activated CD4+ T cells suppress fibrin deposition and microvascular thrombosis by directly counteracting coagulation activation by neutrophils and classical monocytes. T cell activation, which is initially triggered by IL- 12p40- and MHC-II dependent mechanisms, enhances intravascular fibrinolysis via LFA-1. Moreover, CD4+ T cells disfavor the association of the fibrinolysis inhibitor TAFI with fibrin whereby fibrin deposition is increased by TAFI in the absence but not presence of T cells. In human infections thrombosis development is inversely related to microvascular levels of CD4+ T cells. Thus, fibrin promotes LFA-1 dependent T helper cell activation in infections which drives a negative feedback cycle that rapidly restricts intravascular fibrin and thrombosis development.

15.
FASEB J ; 37(3): e22752, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794636

RESUMO

Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.


Assuntos
Aterosclerose , Fatores Inibidores da Migração de Macrófagos , Placa Aterosclerótica , Animais , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Aterosclerose/metabolismo , Quimiocinas , Envelhecimento , Apolipoproteínas E/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana , Receptores Imunológicos
16.
Immunity ; 42(6): 1100-15, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084025

RESUMO

Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe(-/-) mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4(+) T cells, generated CD4(+), CD8(+), T regulatory (Treg) effector and central memory cells, converted naive CD4(+) T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin ß receptors (VSMC-LTßRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTßRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe(-/-)Ltbr(-/-) and to a similar extent in aged Apoe(-/-)Ltbr(fl/fl)Tagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTßRs participate in atherosclerosis protection via ATLOs.


Assuntos
Envelhecimento/imunologia , Aterosclerose/imunologia , Receptor beta de Linfotoxina/metabolismo , Miócitos de Músculo Liso/fisiologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Túnica Adventícia/imunologia , Envelhecimento/genética , Animais , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Coristoma/imunologia , Memória Imunológica , Ativação Linfocitária/genética , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética
17.
Circ Res ; 131(8): 701-712, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36102188

RESUMO

BACKGROUND: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. METHODS: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. RESULTS: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+ T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+ T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+ T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. CONCLUSIONS: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Água Potável , Placa Aterosclerótica , Aminoácidos , Animais , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Feminino , Homoarginina/farmacologia , Camundongos , Cadeias Pesadas de Miosina , Linfócitos T/metabolismo
18.
Eur Heart J ; 44(29): 2672-2681, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210082

RESUMO

This review based on the ESC William Harvey Lecture in Basic Science 2022 highlights recent experimental and translational progress on the therapeutic targeting of the inflammatory components in atherosclerosis, introducing novel strategies to limit side effects and to increase efficacy. Since the validation of the inflammatory paradigm in CANTOS and COLCOT, efforts to control the residual risk conferred by inflammation have centred on the NLRP3 inflammasome-driven IL-1ß-IL6 axis. Interference with the co-stimulatory dyad CD40L-CD40 and selective targeting of tumour necrosis factor-receptor associated factors (TRAFs), namely the TRAF6-CD40 interaction in macrophages by small molecule inhibitors, harbour intriguing options to reduce established atherosclerosis and plaque instability without immune side effects. The chemokine system crucial for shaping immune cell recruitment and homoeostasis can be fine-tuned and modulated by its heterodimer interactome. Structure-function analysis enabled the design of cyclic, helical, or linked peptides specifically targeting or mimicking these interactions to limit atherosclerosis or thrombosis by blunting myeloid recruitment, boosting regulatory T cells, inhibiting platelet activity, or specifically blocking the atypical chemokine MIF without notable side effects. Finally, adventitial neuroimmune cardiovascular interfaces in advanced atherosclerosis show robust restructuring of innervation from perivascular ganglia and employ sensory neurons of dorsal root ganglia to enter the central nervous system and to establish an atherosclerosis-brain circuit sensor, while sympathetic and vagal efferents project to the celiac ganglion to create an atherosclerosis-brain circuit effector. Disrupting this circuitry by surgical or chemical sympathectomy limited disease progression and enhanced plaque stability, opening exciting perspectives for selective and tailored intervention beyond anti-inflammatory strategies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Macrófagos/patologia , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico
19.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257550

RESUMO

A photoacoustic sensor system (PAS) intended for carbon dioxide (CO2) blood gas detection is presented. The development focuses on a photoacoustic (PA) sensor based on the so-called two-chamber principle, i.e., comprising a measuring cell and a detection chamber. The aim is the reliable continuous monitoring of transcutaneous CO2 values, which is very important, for example, in intensive care unit patient monitoring. An infrared light-emitting diode (LED) with an emission peak wavelength at 4.3 µm was used as a light source. A micro-electro-mechanical system (MEMS) microphone and the target gas CO2 are inside a hermetically sealed detection chamber for selective target gas detection. Based on conducted simulations and measurement results in a laboratory setup, a miniaturized PA CO2 sensor with an absorption path length of 2.0 mm and a diameter of 3.0 mm was developed for the investigation of cross-sensitivities, detection limit, and signal stability and was compared to a commercial infrared CO2 sensor with a similar measurement range. The achieved detection limit of the presented PA CO2 sensor during laboratory tests is 1 vol. % CO2. Compared to the commercial sensor, our PA sensor showed less influences of humidity and oxygen on the detected signal and a faster response and recovery time. Finally, the developed sensor system was fixed to the skin of a test person, and an arterialization time of 181 min could be determined.


Assuntos
Dióxido de Carbono , Utensílios Domésticos , Humanos , Cuidados Críticos , Umidade , Laboratórios
20.
Br Med Bull ; 147(1): 79-89, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37328938

RESUMO

INTRODUCTION: Transient bone osteoporosis (TBO) is characterized by persistent pain, loss of function, no history of trauma and magnetic resonance image (MRI) findings of bone marrow edema. SOURCE OF DATA: PubMed, Google scholar, EMABSE and Web of Science were accessed in February 2023. No time constrains were used for the search. AREAS OF AGREEMENT: TBO is rare and misunderstood, typically affecting women during the third trimester of pregnancy or middle-aged men, leading to functional disability for 4-8 weeks followed by self-resolution of the symptoms. AREAS OF CONTROVERSY: Given the limited evidence in the current literature, consensus on optimal management is lacking. GROWING POINTS: This systematic review investigates current management of TBO. AREAS TIMELY FOR DEVELOPING RESEARCH: A conservative approach leads to the resolution of symptoms and MRI findings at midterm follow-up. Administration of bisphosphonates might alleviate pain and accelerate both clinical and imaging recovery.


Assuntos
Doenças da Medula Óssea , Osteoporose , Masculino , Pessoa de Meia-Idade , Gravidez , Humanos , Feminino , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Difosfonatos/uso terapêutico , Doenças da Medula Óssea/diagnóstico , Edema/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa