Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(12): 2368-2384, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800363

RESUMO

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.


Assuntos
Ataxia/genética , Epilepsia/genética , Perda Auditiva/genética , Complexo Cetoglutarato Desidrogenase/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos da Visão/genética , Alelos , Animais , Células Cultivadas , Criança , Estudos de Coortes , Análise Mutacional de DNA , Drosophila melanogaster/genética , Saúde da Família , Feminino , Fibroblastos , Humanos , Masculino , Splicing de RNA
2.
Mov Disord ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725190

RESUMO

BACKGROUND: Paroxysmal movement disorders are common in Glut1 deficiency syndrome (Glut1DS). Not all patients respond to or tolerate ketogenic diets. OBJECTIVES: The objective was to evaluate the effectiveness and safety of triheptanoin in reducing the frequency of disabling movement disorders in patients with Glut1DS not receiving a ketogenic diet. METHODS: UX007G-CL301 was a randomized, double-blind, placebo-controlled, phase 3 crossover study. After a 6-week run-in, eligible patients were randomized 1:1 to the first sequence (triheptanoin/placebo or placebo/triheptanoin) titration plus maintenance, followed by washout and the opposite sequence titration plus maintenance. The placebo (safflower oil) matched the appearance, taste, and smell of triheptanoin. Open-label triheptanoin was administered in the extension. The frequency of disabling paroxysmal movement disorder events per 4 weeks (recorded by diary during maintenance; primary endpoint) was assessed by Wilcoxon rank-sum test. RESULTS: Forty-three patients (children, n = 16; adults, n = 27) were randomized and treated. There was no difference between triheptanoin and placebo in the mean (interquartile range) number of disabling paroxysmal movement disorder events (14.3 [4.7-38.3] vs. 11.8; [3.2-28.7]; Hodges-Lehmann estimated median difference: 1.46; 95% confidence interval, -1.12 to 4.36; P = 0.2684). Treatment-emergent adverse events were mild/moderate in severity and included diarrhea, vomiting, upper abdominal pain, headache, and nausea. Two patients discontinued the study because of non-serious adverse events that were predominantly gastrointestinal. The study was closed early during the open-label extension because of lack of effectiveness. Seven patients continued to receive triheptanoin compassionately. CONCLUSION: There were no significant differences between the triheptanoin and placebo groups in the frequency of disabling movement disorder events during the double-blind maintenance period. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Epilepsia ; 65(4): 974-983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289522

RESUMO

OBJECTIVE: Electroencephalography (EEG) microstate analysis seeks to cluster the scalp's electric field into semistable topographical EEG activity maps at different time points. Our study aimed to investigate the features of EEG microstates in subjects with focal epilepsy and psychogenic nonepileptic seizures (PNES). METHODS: We included 62 adult subjects with focal epilepsy or PNES who received video-EEG monitoring at the epilepsy monitoring unit. The subjects (mean age = 42.8 ± 21.2 years) were distributed equally between epilepsy and PNES groups. We extracted microstates from a 4.4 ± 1.0-min, 21-channel resting-state EEG. We excluded subjects with interictal epileptiform discharges during resting-state EEGs. After preprocessing, we derived five main EEG microstates-MS1 to MS5-for the full frequency band (1-30 Hz) and frequency subbands (delta, 1-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; beta, 12-30 Hz), using the MATLAB-based EEGLAB toolkit. Statistical features of microstates (duration, occurrence, contribution, global field power [GFP]) were compared between the groups, using logistic regression corrected for age and sex. RESULTS: We detected no differences in microstate parameters in the full frequency band. We found a longer duration (delta: B = -7.680, p = .046; theta: B = -16.200, p = .043) and a higher contribution (delta: B = -7.414, p = .035; theta: B = -7.509, p = .031) of MS4 in lower frequency bands in the epilepsy group. The PNES group showed a higher occurrence of MS5 in the delta subband (B = 3.283, p = .032). In the theta subband, a higher GFP of MS1 was associated with the PNES group (B = 5.674, p = .025), whereas a higher GFP of MS2 was associated with the epilepsy group (B = -6.579, p = .026). SIGNIFICANCE: Microstate features show differences between patients with focal epilepsy and PNES. EEG microstates could be a promising parameter, helping to understand changes in brain dynamics in subjects with epilepsy, and should be explored as a potential biomarker.


Assuntos
Epilepsias Parciais , Epilepsia , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Convulsões/epidemiologia , Convulsões Psicogênicas não Epilépticas , Epilepsia/epidemiologia , Epilepsias Parciais/diagnóstico , Eletroencefalografia
4.
Am J Hum Genet ; 107(4): 683-697, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853554

RESUMO

More than 100 genetic etiologies have been identified in developmental and epileptic encephalopathies (DEEs), but correlating genetic findings with clinical features at scale has remained a hurdle because of a lack of frameworks for analyzing heterogenous clinical data. Here, we analyzed 31,742 Human Phenotype Ontology (HPO) terms in 846 individuals with existing whole-exome trio data and assessed associated clinical features and phenotypic relatedness by using HPO-based semantic similarity analysis for individuals with de novo variants in the same gene. Gene-specific phenotypic signatures included associations of SCN1A with "complex febrile seizures" (HP: 0011172; p = 2.1 × 10-5) and "focal clonic seizures" (HP: 0002266; p = 8.9 × 10-6), STXBP1 with "absent speech" (HP: 0001344; p = 1.3 × 10-11), and SLC6A1 with "EEG with generalized slow activity" (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas Munc18/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/genética , Espasmos Infantis/genética , Distúrbios da Fala/genética , Pré-Escolar , Estudos de Coortes , Feminino , Expressão Gênica , Ontologia Genética , Humanos , Masculino , Mutação , Fenótipo , Convulsões/classificação , Convulsões/diagnóstico , Convulsões/fisiopatologia , Semântica , Canais de Potássio Shab/genética , Espasmos Infantis/classificação , Espasmos Infantis/diagnóstico , Espasmos Infantis/fisiopatologia , Distúrbios da Fala/classificação , Distúrbios da Fala/diagnóstico , Distúrbios da Fala/fisiopatologia , Terminologia como Assunto , Sequenciamento do Exoma
5.
Nervenarzt ; 94(2): 149-158, 2023 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-36695895

RESUMO

Pharmacotherapy is the most important pillar in the treatment of epilepsies. In approximately 50% of epilepsy patients monotherapy with anti-seizure medications (ASM) is insufficient. The knowledge of specific drug interactions in combination therapies is essential to recognize and avoid adverse side effects up to relevant therapy risks, including loss of efficiency and intoxication. Interactions can be of a pharmacokinetic or pharmacodynamic nature. Some effects of interactions in combination therapies can also be advantageous. Therapeutic drug monitoring in serum is not necessary for all ASMs and should be used rationally: however, it should be performed consistently if the indications are present. This review article provides fundamental knowledge about the most relevant interactions between ASMs and the indications for therapeutic drug monitoring.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Epilepsia , Humanos , Anticonvulsivantes/efeitos adversos , Epilepsia/tratamento farmacológico , Interações Medicamentosas , Quimioterapia Combinada
6.
Am J Hum Genet ; 104(6): 1060-1072, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104773

RESUMO

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the µ-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the µ-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2µ conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.


Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Encefalopatias/etiologia , Clatrina/metabolismo , Endocitose , Epilepsia/etiologia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Animais , Encefalopatias/patologia , Criança , Pré-Escolar , Clatrina/genética , Epilepsia/patologia , Feminino , Humanos , Lactente , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/patologia , Sequenciamento do Exoma
7.
Ann Neurol ; 90(3): 464-476, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288049

RESUMO

OBJECTIVE: Psychoses affecting people with epilepsy increase disease burden and diminish quality of life. We characterized postictal psychosis, which comprises about one quarter of epilepsy-related psychoses, and has unknown causation. METHODS: We conducted a case-control cohort study including patients diagnosed with postictal psychosis, confirmed by psychiatric assessment, with available data regarding epilepsy, treatment, psychiatric history, psychosis profile, and outcomes. After screening 3,288 epilepsy patients, we identified 83 with psychosis; 49 had postictal psychosis. Controls were 98 adults, matched by age and epilepsy type, with no history of psychosis. Logistic regression was used to investigate clinical factors associated with postictal psychosis; univariate associations with a p value < 0.20 were used to build a multivariate model. Polygenic risk scores for schizophrenia were calculated. RESULTS: Cases were more likely to have seizure clustering (odds ratio [OR] = 7.59, p < 0.001), seizures with a recollected aura (OR = 2.49, p = 0.013), and a family history of psychiatric disease (OR = 5.17, p = 0.022). Cases showed predominance of right temporal epileptiform discharges (OR = 4.87, p = 0.007). There was no difference in epilepsy duration, neuroimaging findings, or antiseizure treatment between cases and controls. Polygenic risk scores for schizophrenia in an extended cohort of postictal psychosis cases (n = 58) were significantly higher than in 1,366 epilepsy controls (R2  = 3%, p = 6 × 10-3 ), but not significantly different from 945 independent patients with schizophrenia (R2  = 0.1%, p = 0.775). INTERPRETATION: Postictal psychosis occurs under particular circumstances in people with epilepsy with a heightened genetic predisposition to schizophrenia, illustrating how disease biology (seizures) and trait susceptibility (schizophrenia) may interact to produce particular outcomes (postictal psychosis) in a common disease. ANN NEUROL 2021;90:464-476.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Transtornos Psicóticos/genética , Transtornos Psicóticos/fisiopatologia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Eletroencefalografia/métodos , Epilepsia/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/etiologia , Estudos Retrospectivos
8.
Dev Med Child Neurol ; 64(6): 789-798, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35080266

RESUMO

AIM: To investigate the short-term efficacy and safety of high-dose pyridoxine and pyridoxal 5-phosphate (P5P) in the treatment of inherited glycosylphosphatidylinositol (GPI) deficiency-associated epilepsy. METHOD: Participants with genetically confirmed GPI deficiency were treated with oral pyridoxine or P5P as compassionate use in an agreed-upon clinical regimen. Pyridoxine (20-30 mg/kg/day) was used for 3 months. Baseline evaluation included 4 weeks of prospective seizure data and one video electroencephalogram (EEG). Seizure frequency was captured daily. The EEG was repeated after reaching maximum dosage of pyridoxine. Pyridoxine was switched to P5P (20-30 mg/kg/day) if seizure burden was unchanged after 3 months' treatment. Another EEG was done after 3 months of P5P treatment. Primary outcome measures were reduction of seizure frequency and EEG improvements. RESULTS: Seven participants (one female, six males; age range 5-23 year; mean age 11 years 10 months, SD 5 year 2 months) were included. The genetic causes of inherited GPI deficiency were phosphatidylinositol N-acetylglucosaminyltransferase subunit A/T/V deficiency. All had drug-resistant epilepsy and neurodevelopmental impairment. We observed more than 50% seizure frequency reduction in 2 out of 7 and less than 50% reduction in another 3 out of 7 participants. No participants reached seizure freedom. No remarkable changes in electrophysiological findings were observed in 6 out of 7 participants treated with pyridoxine or P5P when comparing the baseline and follow-up EEGs. INTERPRETATION: We observed no long-lasting electrophysiological improvements during treatment but pyridoxine may reduce seizure frequency or burden in inherited GPI deficiency. WHAT THIS PAPER ADDS: Inherited glycosylphosphatidylinositol (GPI) deficiency often causes early-onset and drug-resistant epilepsy. Vitamin B6 is a potential disease-specific treatment; however, efficacy and safety are ill-defined. Pyridoxine may reduce seizure frequency or burden in inherited GPI deficiency. Pyridoxine and P5P could prove to be a useful treatment in some individuals with inherited GPI deficiency and epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Estudos de Coortes , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Epilepsia/genética , Feminino , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/uso terapêutico , Humanos , Lactente , Masculino , Fosfatos/uso terapêutico , Estudos Prospectivos , Fosfato de Piridoxal/uso terapêutico , Piridoxina/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/etiologia
9.
J Neurol Neurosurg Psychiatry ; 92(10): 1044-1052, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33903184

RESUMO

OBJECTIVE: The term 'precision medicine' describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy. METHODS: A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management. RESULTS: We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%). SIGNIFICANCE: Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.


Assuntos
Epilepsia/genética , Medicina de Precisão , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Estudos Retrospectivos , Adulto Jovem
10.
Nervenarzt ; 92(2): 95-106, 2021 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-33245402

RESUMO

BACKGROUND: Scientific knowledge about epilepsies and their clinical ramifications is rapidly expanding. This becomes an even greater challenge for non-specialists to process. Clinical decision support systems (CDSS) can play an important role as an expert-driven diagnostic and therapeutic tool which gives automated and individualized advice. In addition, medical apps and telemedical procedures for diagnostics and treatment and assistance systems for seizure detection in epilepsy patients have become available. OBJECTIVE: This article provides an overview on current tele-epileptological developments and the available telemedical applications. MATERIAL AND METHODS: Based on personal experience and a review of the literature, current epilepsy-specific CDSS, medical apps and assistance systems as well as telemedical applications are characterized and the clinical fields of application are presented. RESULTS AND CONCLUSION: Due to the chronic course and the complexity of the epilepsies and their sequelae, persons with epilepsy could profit from CDSS. Epilepsy-specific CDSS should be usable by medical professionals and patients themselves. Currently, medical apps for people with epilepsy are mostly used to document the clinical course, seizure frequency, medication compliance and side effects. Available seizure detection systems mainly detect generalized tonic-clonic seizures (GTCS). A clinical benefit of such devices is not yet sufficiently confirmed but appears to be likely, because these seizures are specifically associated with sudden unexpected death in epilepsy patients (SUDEP) and interventions are considered to be effective.


Assuntos
Epilepsia , Telemedicina , Morte Súbita , Epilepsia/diagnóstico , Epilepsia/terapia , Humanos , Adesão à Medicação , Convulsões
11.
Neuroimage ; 218: 116967, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445879

RESUMO

BACKGROUND: Bilateral cyclic high frequency deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) reduces the seizure count in a subset of patients with epilepsy. Detecting stimulation-induced alterations of pathological brain networks may help to unravel the underlying physiological mechanisms related to effective stimulation delivery and optimize target engagement. METHODS: We acquired 64-channel electroencephalography during ten ANT-DBS cycles (145 â€‹Hz, 90 â€‹µs, 3-5 â€‹V) of 1-min ON followed by 5-min OFF stimulation to detect changes in cortical activity related to seizure reduction. The study included 14 subjects (three responders, four non-responders, and seven healthy controls). Mixed-model ANOVA tests were used to compare differences in cortical activity between subgroups both ON and OFF stimulation, while investigating frequency-specific effects for the seizure onset zones. RESULTS: ANT-DBS had a widespread desynchronization effect on cortical theta and alpha band activity in responders, but not in non-responders. Time domain analysis showed that the stimulation induced reduction in theta-band activity was temporally linked to the stimulation period. Moreover, stimulation induced theta-band desynchronization in the temporal lobe channels correlated significantly with the therapeutic response. Responders to ANT-DBS and healthy-controls had an overall lower level of theta-band activity compared to non-responders. CONCLUSION: This study demonstrated that temporal lobe channel theta-band desynchronization may be a predictive physiological hallmark of therapeutic response to ANT-DBS and may be used to improve the functional precision of this intervention by verifying implantation sites, calibrating stimulation contacts, and possibly identifying treatment responders prior to implantation.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda/métodos , Sincronização de Fases em Eletroencefalografia , Epilepsia/terapia , Lobo Temporal/fisiopatologia , Ritmo Teta , Adulto , Calibragem , Eletrodos Implantados , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/prevenção & controle , Resultado do Tratamento
12.
N Engl J Med ; 377(17): 1648-1656, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29069555

RESUMO

BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.).


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Epilepsia/patologia , Hipocampo/patologia , Malformações do Desenvolvimento Cortical/patologia , Adulto , Fatores Etários , Idade de Início , Neoplasias Encefálicas/complicações , Criança , Bases de Dados como Assunto , Epilepsia/etiologia , Epilepsia/cirurgia , Europa (Continente) , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Lobo Temporal/patologia
13.
Epilepsia ; 61(5): 995-1007, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32469098

RESUMO

OBJECTIVE: We aimed to describe the extent of neurodevelopmental impairments and identify the genetic etiologies in a large cohort of patients with epilepsy with myoclonic atonic seizures (MAE). METHODS: We deeply phenotyped MAE patients for epilepsy features, intellectual disability, autism spectrum disorder, and attention-deficit/hyperactivity disorder using standardized neuropsychological instruments. We performed exome analysis (whole exome sequencing) filtered on epilepsy and neuropsychiatric gene sets to identify genetic etiologies. RESULTS: We analyzed 101 patients with MAE (70% male). The median age of seizure onset was 34 months (range = 6-72 months). The main seizure types were myoclonic atonic or atonic in 100%, generalized tonic-clonic in 72%, myoclonic in 69%, absence in 60%, and tonic seizures in 19% of patients. We observed intellectual disability in 62% of patients, with extremely low adaptive behavioral scores in 69%. In addition, 24% exhibited symptoms of autism and 37% exhibited attention-deficit/hyperactivity symptoms. We discovered pathogenic variants in 12 (14%) of 85 patients, including five previously published patients. These were pathogenic genetic variants in SYNGAP1 (n = 3), KIAA2022 (n = 2), and SLC6A1 (n = 2), as well as KCNA2, SCN2A, STX1B, KCNB1, and MECP2 (n = 1 each). We also identified three new candidate genes, ASH1L, CHD4, and SMARCA2 in one patient each. SIGNIFICANCE: MAE is associated with significant neurodevelopmental impairment. MAE is genetically heterogeneous, and we identified a pathogenic genetic etiology in 14% of this cohort by exome analysis. These findings suggest that MAE is a manifestation of several etiologies rather than a discrete syndromic entity.


Assuntos
Epilepsias Mioclônicas/patologia , Epilepsia Generalizada/patologia , Convulsões/patologia , Idade de Início , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Criança , Pré-Escolar , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/complicações , Epilepsia Generalizada/genética , Feminino , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Neuroimagem , Fenótipo , Convulsões/genética , Sequenciamento do Exoma
14.
Epilepsia ; 61(4): 657-666, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141622

RESUMO

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.


Assuntos
Anticonvulsivantes/uso terapêutico , Resistência a Medicamentos/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Variantes Farmacogenômicos/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Lamotrigina/uso terapêutico , Levetiracetam/uso terapêutico , Masculino , Ácido Valproico/uso terapêutico
15.
Brain ; 142(2): 376-390, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615093

RESUMO

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations. The E1483K mutation causing mild epilepsy showed no significant biophysical changes, whereas the R1872W mutation causing severe epilepsy induced clear gain-of-function biophysical changes in neuroblastoma cells. However, both mutations increased neuronal firing in primary neuronal cultures. In contrast, the R1620L mutation associated with intellectual disability and autism-but not epilepsy-reduced Na+ current density in neuroblastoma cells and expectedly decreased neuronal firing. Interestingly, for the fourth mutation, A1622D, causing severe intellectual disability and autism without epilepsy, we observed a dramatic slowing of fast inactivation in neuroblastoma cells, which induced a depolarization block in neurons with a reduction of neuronal firing. This latter finding was corroborated by computational modelling. In a second series of experiments, we recorded three more mutations (G1475R, M1760I, G964R, causing intermediate or severe epilepsy, or intellectual disability without epilepsy, respectively) that revealed similar results confirming clear genotype-phenotype relationships. We found intermediate or severe gain-of-function biophysical changes and increases in neuronal firing for the two epilepsy-causing mutations and decreased firing for the loss-of-function mutation causing intellectual disability. We conclude that studies in neurons are crucial to understand disease mechanisms, which here indicate that increased or decreased neuronal firing is responsible for distinct clinical phenotypes.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Animais , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos
16.
Neuropediatrics ; 51(5): 368-372, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32392612

RESUMO

Patients with neurofibromatosis type 1 (NF1) have an increased risk for West syndrome (WS), but the underlying mechanisms linking NF1 and WS are unknown. In contrast to other neurocutaneous syndromes, intracerebral abnormalities explaining the course of infantile spasms (IS) are often absent and the seizure outcome is usually favorable. Several studies have investigated a potential genotype-phenotype correlation between NF1 and seizure susceptibility, but an association was not identified. Therefore, we identified three patients with NF1-related WS (NF1-WS) in a cohort of 51 NF1 patients and performed whole-exome sequencing (WES) to identify genetic modifiers. In two NF1 patients with WS and good seizure outcome, we did not identify variants in epilepsy-related genes. However, in a single patient with NF1-WS and transition to drug-resistant epilepsy, we identified a de novo variant in KCNC2 (c.G499T, p.D167Y) coding for Kv3.2 as a previously undescribed potassium channel to be correlated to epilepsy. Electrophysiological studies of the identified KCNC2 variant demonstrated both a strong loss-of-function effect for the current amplitude and a gain-of-function effect for the channel activation recommending a complex network effect. These results suggest that systematic genetic analysis for potentially secondary genetic etiologies in NF1 patients and severe epilepsy presentations should be done.


Assuntos
Neurofibromatose 1/genética , Canais de Potássio Shaw/genética , Espasmos Infantis/genética , Comorbidade , Humanos , Lactente , Sequenciamento do Exoma
17.
Genet Med ; 21(11): 2496-2503, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31056551

RESUMO

PURPOSE: We aimed to gain insight into frequencies of genetic variants in genes implicated in neurodevelopmental disorder with epilepsy (NDD+E) by investigating large cohorts of patients in a diagnostic setting. METHODS: We analyzed variants in NDD+E using epilepsy gene panel sequencing performed between 2013 and 2017 by two large diagnostic companies. We compared variant frequencies in 6994 panels with another 8588 recently published panels as well as exome-wide de novo variants in 1942 individuals with NDD+E and 10,937 controls. RESULTS: Genes with highest frequencies of ultrarare variants in NDD+E comprised SCN1A, KCNQ2, SCN2A, CDKL5, SCN8A, and STXBP1, concordant with the two other epilepsy cohorts we investigated. In only 46% of the analyzed 262 dominant and X-linked panel genes ultrarare variants in patients were reported. Among genes with contradictory evidence of association with epilepsy, CACNB4, CLCN2, EFHC1, GABRD, MAGI2, and SRPX2 showed equal frequencies in cases and controls. CONCLUSION: We show that improvement of panel design increased diagnostic yield over time, but panels still display genes with low or no diagnostic yield. With our data, we hope to improve current diagnostic NDD+E panel design and provide a resource of ultrarare variants in individuals with NDD+E to the community.


Assuntos
Epilepsia/genética , Testes Genéticos/métodos , Transtornos do Neurodesenvolvimento/genética , Estudos de Casos e Controles , Epilepsia/diagnóstico , Feminino , Frequência do Gene/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Testes Genéticos/normas , Variação Genética/genética , Genótipo , Humanos , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo
18.
Genet Med ; 21(10): 2216-2223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30976099

RESUMO

PURPOSE: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies. METHODS: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT. RESULTS: All patients had hypotonia, severe developmental delay, and epilepsy. Epilepsy onset ranged from first day of life to two years of age. Severity of the seizure disorder varied from treatable seizures to severe neonatal onset epileptic encephalopathies. The facial gestalt of patients resembled that of previously published PIGT patients as they were closest to the center of the PIGT cluster in the clinical face phenotype space and were distinguishable from other gene-specific phenotypes. CONCLUSION: We expand our knowledge of PIGT. Our cases reaffirm that the use of genetic testing is essential for diagnosis in this group of disorders. Finally, we show that computer-assisted facial gestalt analysis accurately assigned PIGT cases to the multiple congenital anomalies-hypotonia-seizures syndrome phenotypic series advocating the additional use of next-generation phenotyping technology.


Assuntos
Aciltransferases/metabolismo , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Convulsões/metabolismo , Anormalidades Múltiplas/genética , Aciltransferases/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Estudos de Associação Genética , Genótipo , Glicosilfosfatidilinositóis/genética , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Fenótipo , Convulsões/genética
19.
Epilepsia ; 60(5): e31-e36, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30719712

RESUMO

Juvenile myoclonic epilepsy (JME) is a common syndrome of genetic generalized epilepsies (GGEs). Linkage and association studies suggest that the gene encoding the bromodomain-containing protein 2 (BRD2) may increase risk of JME. The present methylation and association study followed up a recent report highlighting that the BRD2 promoter CpG island (CpG76) is differentially hypermethylated in lymphoblastoid cells from Caucasian patients with JME compared to patients with other GGE subtypes and unaffected relatives. In contrast, we found a uniform low average percentage of methylation (<4.5%) for 13 CpG76-CpGs in whole blood cells from 782 unrelated European Caucasians, including 116 JME patients, 196 patients with genetic absence epilepsies, and 470 control subjects. We also failed to confirm an allelic association of the BRD2 promoter single nucleotide polymorphism (SNP) rs3918149 with JME (Armitage trend test, P = 0.98), and we did not detect a substantial impact of SNP rs3918149 on CpG76 methylation in either 116 JME patients (methylation quantitative trait loci [meQTL], P = 0.29) or 470 German control subjects (meQTL, P = 0.55). Our results do not support the previous observation that a high DNA methylation level of the BRD2 promoter CpG76 island is a prevalent epigenetic motif associated with JME in Caucasians.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epilepsia Mioclônica Juvenil/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Epilepsia Tipo Ausência/epidemiologia , Epilepsia Tipo Ausência/genética , Europa (Continente) , Feminino , Humanos , Leucócitos/química , Masculino , Epilepsia Mioclônica Juvenil/sangue , Epilepsia Mioclônica Juvenil/epidemiologia , Polimorfismo de Nucleotídeo Único
20.
Epilepsy Behav ; 91: 90-93, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30076047

RESUMO

The glucose transporter type 1 (Glut1) is the most important energy carrier of the brain across the blood-brain barrier. In the early nineties, the first genetic defect of Glut1 was described and known as the Glut1 deficiency syndrome (Glut1-DS). It is characterized by early infantile seizures, developmental delay, microcephaly, and ataxia. Recently, milder variants have also been described. The clinical picture of Glut1 defects and the understanding of the pathophysiology of this disease have significantly grown. A special form of transient movement disorders, the paroxysmal exertion-induced dyskinesia (PED), absence epilepsies particularly with an early onset absence epilepsy (EOAE) and childhood absence epilepsy (CAE), myoclonic astatic epilepsy (MAE), episodic choreoathetosis and spasticity (CSE), and focal epilepsy can be based on a Glut1 defect. Despite the rarity of these diseases, the Glut1 syndromes are of high clinical interest since a very effective therapy, the ketogenic diet, can improve or reverse symptoms especially if it is started as early as possible. The present article summarizes the clinical features of Glut1 syndromes and discusses the underlying genetic mutations, including the available data on functional tests as well as the genotype-phenotype correlations. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond".


Assuntos
Epilepsia/genética , Transportador de Glucose Tipo 1/genética , Transtornos dos Movimentos/genética , Mutação/genética , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Erros Inatos do Metabolismo dos Carboidratos/genética , Dieta Cetogênica/métodos , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/dietoterapia , Distúrbios Distônicos/genética , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/dietoterapia , Epilepsias Mioclônicas/genética , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/dietoterapia , Epilepsias Parciais/genética , Epilepsia/diagnóstico , Epilepsia/dietoterapia , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/dietoterapia , Epilepsia Tipo Ausência/genética , Humanos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/dietoterapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa