Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Am Chem Soc ; 146(14): 9493-9498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530089

RESUMO

The thermodynamic favorability of an alkaline solution for the oxidation of water suggests the need for developing hydrogen evolution reaction (HER) catalysts that can function in basic aqueous solutions so that both of the half reactions in overall water splitting can occur in mutually compatible solutions. Although photocatalytic HERs have been reported mostly in acidic solutions and a few at basic pHs in mixed organic aqueous solutions, visible-light driven HER catalyzed by molecular metal complexes in purely alkaline aqueous solutions remains largely unexplored. Here, we report a new cobalt complex with a tetrapyridylamine ligand that catalyzes photolytic HER with turnover number up to 218 000 in purely aqueous solutions at pH 9.0. Density functional theory (DFT) calculations suggested a modified electron transfer (E)-proton transfer (C)-electron transfer (E)-proton transfer (C) (mod-ECEC) pathway for hydrogen production from the protonation of CoII-H species. The remarkable catalytic activity resulting from subtle structural changes of the ligand scaffold highlights the importance of studying structure-function relationships in molecular catalyst design. Our present work significantly advances the development of a molecular metal catalyst for visible-light driven HER in more challenging alkaline aqueous solutions that holds substantial promise in solar-driven water-splitting systems.

2.
Angew Chem Int Ed Engl ; 61(43): e202211496, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36000510

RESUMO

A combined synthetic and theoretical investigation of N-heterocyclic carbene (NHC) adducts of magnesium amidoboranes is presented, which involves a rare example of reversible migratory insertion within a normal valent s-block element. The reaction of (NHC)Mg(N(SiMe3 )2 )2 (1) and dimethylamine borane yields the tris(amide) adduct (NHC-BN)Mg(NMe2 BH3 )(N(SiMe3 )2 ) (2; NHC-BN = NHC-BH2 NMe2 ). In addition to Me2 N=BH2 capture at the NHC C-Mg bond, mechanistic investigations suggest the likelihood of aminoborane migratory insertion from an RMg(NMe2 BH2 NMe2 BH3 ) intermediate. To elucidate these processes, the carbene complexes (NHC)Mg(NMe2 BH3 )2 (8) and (NHC)Mg(NMe2 BH2 NMe2 BH3 )2 (9) were synthesized, and a dynamic migration of Me2 N=BH2 between Mg-N and NHC C-Mg bonds was observed in 9. This unusual reversible migratory insertion is presumably induced by dissimilar charge localization in the - {NMe2 BH2 NMe2 BH3 } anion, as well as the capacity of NHCs to reversibly capture Me2 N=BH2 in the presence of Lewis acidic magnesium species.

3.
Biophys J ; 120(17): 3577-3587, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358526

RESUMO

To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to utilize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models. The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the resulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only 200-300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-based enzyme model design.


Assuntos
Catecol O-Metiltransferase , Teoria Quântica , Domínio Catalítico , Catecol O-Metiltransferase/metabolismo , Quimioinformática , Solventes
4.
Inorg Chem ; 60(4): 2138-2148, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534562

RESUMO

Ruthenium complexes bearing protic diimine ligands are cytotoxic to certain cancer cells upon irradiation with blue light. Previously reported complexes of the type [(N,N)2Ru(6,6'-dhbp)]Cl2 with 6,6'-dhbp = 6,6'-dihydroxybipyridine and N,N = 2,2'-bipyridine (bipy) (1A), 1,10-phenanthroline (phen) (2A), and 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) (3A) show EC50 values as low as 4 µM (for 3A) vs breast cancer cells upon blue light irradiation ( Inorg. Chem. 2017, 56, 7519). Herein, subscript A denotes the acidic form of the complex bearing OH groups, and B denotes the basic form bearing O- groups. This photocytotoxicity was originally attributed to photodissociation, but recent results suggest that singlet oxygen formation is a more plausible cause of photocytotoxicity. In particular, bulky methoxy substituents enhance photodissociation but these complexes are nontoxic ( Dalton Trans 2018, 47, 15685). Cellular studies are presented herein that show the formation of reactive oxygen species (ROS) and apoptosis indicators upon treatment of cells with complex 3A and blue light. Singlet oxygen sensor green (SOSG) shows the formation of 1O2 in cell culture for cells treated with 3A and blue light. At physiological pH, complexes 1A-3A are deprotonated to form 1B-3B in situ. Quantum yields for 1O2 (ϕΔ) are 0.87 and 0.48 for 2B and 3B, respectively, and these are an order of magnitude higher than the quantum yields for 2A and 3A. The values for Ï•Δ show an increase with 6,6'-dhbp derived substituents as follows: OMe < OH < O-. TD-DFT studies show that the presence of a low lying triplet metal-centered (3MC) state favors photodissociation and disfavors 1O2 formation for 2A and 3A (OH groups). However, upon deprotonation (O- groups), the 3MLCT state is accessible and can readily lead to 1O2 formation, but the dissociative 3MC state is energetically inaccessible. The changes to the energy of the 3MLCT state upon deprotonation have been confirmed by steady state luminescence experiments on 1A-3A and their basic analogs, 1B-3B. This energy landscape favors 1O2 formation for 2B and 3B and leads to enhanced toxicity for these complexes under physiological conditions. The ability to convert readily from OH to O- groups allowed us to investigate an electronic change that is not accompanied by steric changes in this fundamental study.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Luz , Processos Fotoquímicos , Compostos de Rutênio/química , Oxigênio Singlete/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Prótons , Oxigênio Singlete/metabolismo , Espectrofotometria Ultravioleta
5.
J Phys Chem A ; 125(1): 3-12, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33395288

RESUMO

Polycyclic aromatic azaborines have potential applications as luminophores, novel fluorescent materials, organic light-emitting diodes, and fluorescent sensors. Additionally, their relative structural simplicity should allow the use of computational techniques to design and screen novel compounds in a rapid manner. Herein, the absorption and emission maxima of twelve polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were examined to determine a methodology for reliably predicting both the energy and character (local excitation [LE] vs charge transfer [CT]) of the absorption and emission maxima for these compounds. The necessity of implicit solvation models was also investigated. The cam-QTP(01) functional with a small, double-ζ quality basis set provides reliable data compared to EOM-CCSD/cc-pVDZ single-point computations. Of note, commonly used functionals for these applications (B3LYP and ωB97xD) struggle to provide reliable results for both the energy and LE character of the transitions relative to EOM-CCSD computations.

6.
J Chem Phys ; 155(11): 114304, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551533

RESUMO

This work addresses the pathological behavior of the energetics of dimethyl sulfoxide and related sulfur-containing compounds by providing the computational benchmark energetics of R2E2 species, where R = H/CH3 and E = O/S, with bent and pyramidal geometries using state-of-the-art methodologies. These 22 geometries were fully characterized with coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)], second-order Møller-Plesset perturbation theory (MP2), and 22 density functional theory (DFT) methods with 8, 12, and 12, respectively, correlation consistent basis sets of double-, triple-, or quadruple-ζ quality. The relative energetics were determined at the MP2 and CCSD(T) complete basis set (CBS) limits using 17 basis sets up to sextuple-ζ and include augmented, tight-d, and core-valence correlation consistent basis sets. The relative energies of oxygen-/sulfur-containing compounds exhibit exceptionally slow convergence to the CBS limit with canonical methods as well as significant basis set dependence. CCSD(T) with quadruple-ζ basis sets can give qualitatively incorrect relative energies. Explicitly correlated MP2-F12 and CCSD(T)-F12 methods dramatically accelerate the convergence of the relative energies to the CBS limit for these problematic compounds. The F12 methods with a triple-ζ quality basis set give relative energies that deviate no more than 0.41 kcal mol-1 from the benchmark CBS limit. The correlation consistent Composite Approach (ccCA), ccCA-TM (TM for transition metals), and G3B3 deviated by no more than 2 kcal mol-1 from the benchmark CBS limits. Relative energies for oxygen-/sulfur-containing systems fully characterized with DFT are quite unreliable even with triple-ζ quality basis sets, and 13 out of 45 combinations fortuitously give a relative energy that is within 1 kcal mol-1 on average from the benchmark CCSD(T) CBS limit for these systems.

7.
Molecules ; 26(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923446

RESUMO

The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d'); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol-1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol-1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures.

8.
Chemistry ; 26(44): 10072-10082, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364300

RESUMO

Because of their rigidity, polycyclic aromatic hydrocarbons (PAHs) have become a significant building block in molecular materials chemistry. Fusion or doping of boron into PAHs is known to improve the optoelectronic properties by reducing the LUMO energy level. Herein, we report a comprehensive study on the syntheses, structures, and photophysical properties of a new class of fused N-heterocyclic boranes (NHBs), pyrene- and benzene-linked in a "Janus-type" fashion (2-4, 6-9, and 11). Remarkably, these examples of fused NHBs display fluorescent properties, and collectively their emission spans the visible spectrum. The pyrene-fused NHBs all display blue fluorescence, as the excitations are dominated by the pyrene core. In notable contrast, the emission properties of the benzene-fused analogues are highly tunable and are dependent on the electronics of the NHB fragments (i.e., the functional group directly bound to the boron atoms). Pyrene-fused 2-4 and 11 represent the only molecules in which the K-region of pyrene is functionalized with NHB units, and while they exhibit distorted (twisted or stair-stepped) pyrene cores, benzene-fused 6-9 are planar. The electronic structure and optical properties of these materials were probed by computational studies, including an evaluation of aromaticity, electronic transitions, and molecular orbitals.

9.
Angew Chem Int Ed Engl ; 59(31): 12694-12697, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32307871

RESUMO

To explore the structure-function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6-[6-(1,1-di-pyridin-2-yl-ethyl)-pyridin-2-ylmethyl]-[2,2']bipyridinyl (Py3Me-Bpy). These modifications resulted in significantly improved stability and activity in both electro- and photocatalytic HER in neutral water. [Co(Py3Me-Bpy)(OH2 )](PF6 )2 catalyzes the electrolytic HER at -1.3 V (vs. SHE) for 20 hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pH 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoI species. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2 released from the protonation of CoII -H species.

10.
Inorg Chem ; 58(12): 8012-8020, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31185538

RESUMO

Five ruthenium catalysts described herein facilitate self-sensitized carbon dioxide reduction to form carbon monoxide with a ruthenium catalytic center. These catalysts include four new and one previously reported CNC pincer complexes featuring a pyridinol derived N-donor and N-heterocyclic carbene (NHC) C-donors derived from imidazole or benzimidazole. The complexes have been characterized fully by spectroscopic and analytic methods, including X-ray crystallography. Introduction of a 2,2'-bipyridine (bipy) coligand and phenyl groups on the NHC ligand was necessary for rapid catalysis. [(CNC)Ru(bipy)(CH3CN)](OTf)2 is among the most active and durable photocatalysts in the literature for CO2 reduction without an external photosensitizer. The role of the structure of this complex in catalysis is discussed, including the importance of the pincer's phenyl wingtips, the bipyridyl ligand, and a weakly coordinating monodentate ligand.

11.
Inorg Chem ; 58(24): 16458-16474, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31790221

RESUMO

Irradiation at 460 nm of [Mo3(µ3-S)(µ2-S2)3(S2CNR2)3]I ([2a]I, R = Me; [2b]I, R = Et; [2c]I, R = iBu; [2d]I, R = CH2C6H5) in a mixed aqueous-polar organic medium with [Ru(bipy)3]2+ as photosensitizer and Et3N as electron donor leads to H2 evolution. Maximum activity (300 turnovers, 3 h) is found with R = iBu in 1:9 H2O:MeCN; diminished activity is attributed to deterioration of [Ru(bipy)3]2+. Monitoring of the photolysis mixture by mass spectrometry suggests transformation of [Mo3(µ3-S)(µ2-S2)3(S2CNR2)3]+ to [Mo3(µ3-S)(µ2-S)3(S2CNR2)3]+ via extrusion of sulfur on a time scale of minutes without accumulation of the intermediate [Mo3S6(S2CNR2)3]+ or [Mo3S5(S2CNR2)3]+ species. Deliberate preparation of [Mo3S4(S2CNEt2)3]+ ([3]+) and treatment with Et2NCS21- yields [Mo3S4(S2CNEt2)4] (4), where the fourth dithiocarbamate ligand bridges one edge of the Mo3 triangle. Photolysis of 4 leads to H2 evolution but at ∼25% the level observed for [Mo3S7(S2CNEt2)3]+. Early time monitoring of the photolyses shows that [Mo3S4(S2CNEt2)4] evolves H2 immediately and at constant rate, while [Mo3S7(S2CNEt2)3]+ shows a distinctive incubation prior to a more rapid H2 evolution rate. This observation implies the operation of catalysts of different identity in the two cases. Photolysis solutions of [Mo3S7(S2CNiBu2)3]+ left undisturbed over 24 h deposit the asymmetric Mo6 cluster [(iBu2NCS2)3(µ2-S2)2(µ3-S)Mo3](µ3-S)(µ3-η2,η1-S',η1-S″-S2)[Mo3(µ2-S)3(µ3-S)(S2CNiBu2)2(µ2-S2CNiBu2)] in crystalline form, suggesting that species with this hexametallic composition and core topology are the probable H2-evolving catalysts in photolyses beginning with [Mo3S7(S2CNR2)3]+. When used as solvent, N,N-dimethylformamide (DMF) suppresses H2-evolution but to a greater degree for [Mo3S4(S2CNEt2)4] than for [Mo3S7(S2CNEt2)3]+. Recrystallization of [Mo3S4(S2CNEt2)4] from DMF affords [Mo3S4(S2CNEt2)4(η1,κO-DMF)] (5), implying that inhibition by DMF arises from competition for a Mo coordination site that is requisite for H2 evolution. Computational assessment of [Mo3S4(S2CNMe2)3]+ following addition of 2H+ and 2e- suggests a Mo(H)-µ2(SH) intermediate as the lowest energy species for H2 elimination. An analogous pathway may be available to the Mo6 cluster via dissociation of one end of the µ2-S2CNR2 ligand, a known hemilabile ligand type, in the [Mo3S4]4+ fragment.

12.
J Am Chem Soc ; 140(29): 9219-9229, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29949370

RESUMO

Structural modifications of molecular cobalt catalysts have provided important insights into the structure-function relationship for the hydrogen evolution reaction. We have shown that replacement of equatorial pyridines with more basic and conjugate isoquinoline groups of a pentadentate ligand results in lower overpotential and higher catalytic activity for electro- and photolytic H2 production in aqueous solutions. To fully understand the electronic and steric effects of the axial group that lies trans to the proposed cobalt hydride intermediate, isoquinoline groups were introduced in two new pentadentate ligands, N, N-bis(2-pyridinylmethyl)[3-(2-pyridinyl)isoquinoline)]-1-methanamine (DPA-1-MPI) and N, N-bis(2-pyridinylmethyl)[1-(2-pyridinyl)-isoquinoline)]-3-methanamine (DPA-3-MPI). Despite a slight structural difference of the introduced isoquinoline group, the resulting cobalt complexes display drastic changes in their electro- and photochemical properties. There are positive shifts of 290 and 260 mV, respectively, for the CoII/CoI and CoIII-H/CoII-H couples from [Co(DPA-1-MPI)(H2O)](PF6)3 to [Co(DPA-3-MPI)(H2O)](PF6)3, with the former being ∼32 times as active as the latter in photocatalytic H2 production. Density functional theory (DFT) calculations show that the protonation of CoI to yield the CoIII-H species is energetically more favorable for [Co(DPA-1-MPI)(H2O)](PF6)3 than that of [Co(DPA-3-MPI)(H2O)](PF6)3. Both experimental results and DFT computations suggest that the presence of a planar conjugate bipyridyl unit or its isoquinoline derivative is a key feature for stabilizing low valent CoI species toward proton binding. The incorporation of an electron-donating group trans to the proposed Co-H species also facilitates proton binding and H-H bond formation, which is proposed to occur by the heterolytic coupling of CoII-H species. The overall catalytic H2 evolution is presented as the modified electron transfer (E)-proton transfer (C)-electron transfer (E)-proton transfer (C) (mod-ECEC) pathway. This study provides important new insight into the electronic and steric factors controlling catalytic H2 production by Co complexes with pentadentate ligands.

13.
J Am Chem Soc ; 140(31): 9819-9822, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30048128

RESUMO

We report the crystallography, emission spectra, femtosecond pump-probe spectroscopy, and density functional theory computations for a series of ruthenium complexes that comprise a new class of chelating triphenylphosphine based ligands with an appended sulfoxide moiety. These ligands differ only in the presence of the para-substitutent (e.g., H, OCH3, CF3). The results show a dramatic range in photoisomerization reactivity that is ascribed to differences in the electron density of the phosphine ligand donated to the ruthenium and the nature of the excited state.

14.
J Org Chem ; 83(16): 9497-9503, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29896959

RESUMO

C-Unsubstituted 1,2-diazetidines, a rarely studied type of four-membered heterocyclic compounds, were synthesized through an operationally simple intermolecular vicinal disubstitution reaction. 1,2-Diazetidine derivatives bearing various N-arylsulfonyl groups were readily accessed and studied by experimental and computed Raman spectra. The ring-opening reaction of the diazetidine was explored and resulted in the identification of a selective N-N bond cleavage with thiols as nucleophiles, which stereoselectively produced a new class of N-sulfenylimine derivatives with C-aminomethyl groups.

15.
J Comput Chem ; 38(28): 2430-2438, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-28800152

RESUMO

Accurate computationally derived reduction potentials are important for catalyst design. In this contribution, relatively inexpensive density functional theory methods are evaluated for computing reduction potentials of a wide variety of organic, inorganic, and organometallic complexes. Astonishingly, SCRF single points on B3LYP optimized geometries with a reasonably small basis set/ECP combination works quite well--B3LYP with the BS1 [modified-LANL2DZ basis set/ECP (effective core potential) for metals, LANL2DZ(d,p) basis set/LANL2DZ ECP for heavy nonmetals (Si, P, S, Cl, and Br), and 6-31G(d') for other elements (H, C, N, O, and F)] and implicit PCM solvation models, SMD (solvation model based on density) or IEFPCM (integral equation formalism polarizable continuum model with Bondi atomic radii and α = 1.1 reaction field correction factor). The IEFPCM-Bondi-B3LYP/BS1 methodology was found to be one of the least expensive and most accurate protocols, among six different density functionals tested (BP86, PBEPBE, B3LYP, B3P86, PBE0, and M06) with thirteen different basis sets (Pople split-valence basis sets, correlation consistent basis sets, or Los Alamos National Laboratory ECP/basis sets) and four solvation models (SMD, IEFPCM, IPCM, and CPCM). The MAD (mean absolute deviation) values of SCRF-B3LYP/BS1 of 49 studied species were 0.263 V for SMD and 0.233 V for IEFPCM-Bondi; and the linear correlations had respectable R2 values (R2 = 0.94 for SMD and R2 = 0.93 for IEFPCM-Bondi). These methodologies demonstrate relatively reliable, convenient, and time-saving functional/basis set/solvation model combinations in computing the reduction potentials of transition metal complexes with moderate accuracy. © 2017 Wiley Periodicals, Inc.

16.
Org Biomol Chem ; 15(40): 8661-8668, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28984882

RESUMO

As a member of the histidine triad (HIT) protein superfamily, human histidine triad nucleotide binding protein 1 (hHint1) serves as an efficient enzyme in the hydrolysis of phosphoramidate. In particular, hHint1 has been utilized to activate nucleotide prodrugs (proTides). Understanding the mechanism of hHint1 will aid in the future design of proTides. Density functional theory (DFT) computations on a 228-atom cluster active-site model were performed to investigate the hydrolysis mechanism of a phosphoramidate substrate. The overall proposed mechanism included the key involvement of the histidine triad as a proton shuttle. Protonated methylphosphoramidate was first formed by proton transfer of protonated His114 species. A penta-coordinated phosphoryl intermediate, protonated methylphosphorodiamidate, was generated by a nucleophilic attack of His112. After the release of amine and the generation of a phosphorylated histidine intermediate, the nucleophilic attack of an active-site water produced a hydrolyzed intermediate that subsequently transferred a proton back to His114. A rate-determining fully associative pathway with a free energy of activation of 21.7 kcal mol-1 formed the penta-coordinated phosphoryl intermediate. A non-rate determining associative-interchange transition state was involved in the formation of transient tetra-coordinated phosphoryl intermediate. The overall hydrolysis was favorable by -16.1 kcal mol-1.


Assuntos
Amidas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ácidos Fosfóricos/metabolismo , Teoria Quântica , Amidas/química , Catálise , Humanos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Proteínas do Tecido Nervoso/química , Ácidos Fosfóricos/química
17.
Org Biomol Chem ; 15(48): 10172-10183, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29170787

RESUMO

Nine new polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were synthesized using a convenient two-step, one-pot procedure. Characterization of the prepared compounds show the luminescence wavelength and the quantum yields of the azaborines were tunable by controlling the power and location of the donor and acceptor substituents on the chromophore. UV-visible spectroscopy and density functional theory (DFT) computations revealed that the addition of electron-donating moieties to the isoindolinone hemisphere raised the energy of the HOMO, resulting in the reduction of the HOMO-LUMO gap. The addition of an electron-accepting moiety to the isoindolinone hemisphere and an electron-donating group to the boronic acid hemisphere decreased the HOMO-LUMO gap considerably, leading to emission properties from partial intramolecular charge transfer (ICT) states. The combined effect of an acceptor on the isoindolinone side and a donor on the boronic acid side (strong acceptor-π-donor) gave the most red-shifted absorption. The polycyclic aromatic BN-1,2-azaborines emitted strong fluorescence in solution and in the solid-state with the largest red-shifted emission at 640 nm and a Stokes shift of Δλ = 218 nm, or Δν = 8070 cm-1.

18.
J Org Chem ; 81(22): 10955-10963, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27704820

RESUMO

Six new heteroaromatic polycyclic azaborine chromophores were designed, synthesized, and investigated as easily tunable high-luminescent organic materials. The impact of the nitrogen-boron-hydroxy (N-BOH) unit in the azaborines was investigated by comparison with their N-carbonyl analogs. Insertion of the N-B(OH)-C unit into heteroaromatic polycyclic compounds resulted in strong visible absorption and sharp fluorescence with efficient quantum yields. The solid-state fluorescence of the heteroaromatic polycyclic compounds displayed a large Stokes shift compared to being in solution. The large Stokes shifts observed offset the self-quench effect in the solid state.

19.
J Phys Chem A ; 120(50): 9982-9997, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27936738

RESUMO

Acquisition of highly accurate energetic data for chromium-containing molecules and various chromium carbonyl complexes is a major step toward calibrating bond energies and thermal isomerization energies from mechanisms for Cr-centered photochromic materials being developed in our laboratories. The performance of six density functionals in conjunction with seven basis sets, utilizing Gaussian-type orbitals, has been evaluated for the calculation of gas-phase enthalpies of formation and enthalpies of reaction at 298.15 K on various chromium-containing systems. Nineteen molecules were examined: Cr(CO)6, Cr(CO)5, Cr(CO)5(C2H4), Cr(CO)5(C2ClH3), Cr(CO)5(cis-(C2Cl2H2)), Cr(CO)5(gem-(C2Cl2H2)), Cr(CO)5(trans-(C2Cl2H2)), Cr(CO)5(C2Cl3H), Cr(CO)5(C2Cl4), CrO2, CrF2, CrCl2, CrCl4, CrBr2, CrBr4, CrOCl2, CrO2Cl2, CrOF2, and CrO2F2. The performance of 69 density functionals in conjunction with a single basis set utilizing Slater-type orbitals (STO) and a zeroth-order relativistic approximation was also evaluated for the same test set. Values derived from density functional theory were compared to experimental values where available, or values derived from the correlation consistent composite approach (ccCA). When all reactions were considered, the functionals that exhibited the smallest mean absolute deviations (MADs, in kcal mol-1) from ccCA-derived values were B97-1 (6.9), VS98 (9.0), and KCIS (9.4) in conjunction with quadruple-ζ STO basis sets and B97-1 (9.3) in conjunction with cc-pVTZ basis sets. When considering only the set of gas-phase reaction enthalpies (ΔrH°gas), the functional that exhibited the smallest MADs from ccCA-derived values were B97-1 in conjunction with cc-pVTZ basis sets (9.1) and PBEPBE in conjunction with polarized valence triple-ζ basis set/effective core potential combination for Cr and augmented and multiple polarized triple-ζ Pople style basis sets (9.5). Also of interest, certainly because of known cancellation of errors, PBEPBE with the least-computationally expensive basis set combination considered in the present study (valence double-ζ basis set/effective core potential combination for Cr and singly-polarized double-ζ Pople style basis sets) also provided reasonable accuracy (11.1). An increase in basis set size was found to have an improvement in accuracy for the best performing functional (B97-1).

20.
Biochemistry ; 54(27): 4236-47, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26121557

RESUMO

Tyrosyl-DNA phosphodiesterase I (Tdp1) is a DNA repair enzyme conserved across eukaryotes that catalyzes the hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase I and the 3'-phosphate of DNA. Atomic level details of the mechanism of Tdp1 are proposed and analyzed using a fully quantum mechanical, geometrically constrained model. The structural basis for the computational model is the vanadate-inhibited crystal structure of human Tdp1 (hTdp1, Protein Data Bank entry 1RFF ). Density functional theory computations are used to acquire thermodynamic and kinetic data along the catalytic pathway, including the phosphoryl transfer and subsequent hydrolysis. Located transition states and intermediates along the reaction coordinate suggest an associative phosphoryl transfer mechanism with five-coordinate phosphorane intermediates. Similar to both theoretical and experimental results for phospholipase D, the proposed mechanism for hTdp1 also includes the thermodynamically favorable possibility of a four-coordinate phosphohistidine "dead-end" product.


Assuntos
Histidina/análogos & derivados , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Histidina/metabolismo , Humanos , Hidrólise , Cinética , Modelos Moleculares , Fosfolipase D/química , Fosfolipase D/metabolismo , Especificidade por Substrato , Termodinâmica , Vanadatos/química , Vanadatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa