Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(48): 16191-16206, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051206

RESUMO

Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.


Assuntos
Bioensaio , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microvilosidades/metabolismo , Miosinas/metabolismo , Células CACO-2 , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Células HeLa , Humanos , Microvilosidades/genética , Miosinas/genética
2.
J Biol Chem ; 295(28): 9281-9296, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32209652

RESUMO

Specialized transporting and sensory epithelial cells employ homologous protocadherin-based adhesion complexes to remodel their apical membrane protrusions into organized functional arrays. Within the intestine, the nutrient-transporting enterocytes utilize the intermicrovillar adhesion complex (IMAC) to assemble their apical microvilli into an ordered brush border. The IMAC bears remarkable homology to the Usher complex, whose disruption results in the sensory disorder type 1 Usher syndrome (USH1). However, the entire complement of proteins that comprise both the IMAC and Usher complex are not yet fully elucidated. Using a protein isolation strategy to recover the IMAC, we have identified the small EF-hand protein calmodulin-like protein 4 (CALML4) as an IMAC component. Consistent with this finding, we show that CALML4 exhibits marked enrichment at the distal tips of enterocyte microvilli, the site of IMAC function, and is a direct binding partner of the IMAC component myosin-7b. Moreover, distal tip enrichment of CALML4 is strictly dependent upon its association with myosin-7b, with CALML4 acting as a light chain for this myosin. We further show that genetic disruption of CALML4 within enterocytes results in brush border assembly defects that mirror the loss of other IMAC components and that CALML4 can also associate with the Usher complex component myosin-7a. Our study further defines the molecular composition and protein-protein interaction network of the IMAC and Usher complex and may also shed light on the etiology of the sensory disorder USH1H.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Enterócitos/metabolismo , Cadeias Leves de Miosina/metabolismo , Síndromes de Usher/metabolismo , Animais , Células COS , Células CACO-2 , Calmodulina/genética , Membrana Celular/genética , Membrana Celular/patologia , Chlorocebus aethiops , Enterócitos/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Miosina Tipo II/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/patologia
3.
Proc Natl Acad Sci U S A ; 114(19): E3776-E3785, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439001

RESUMO

Unconventional myosin 7a (Myo7a), myosin 7b (Myo7b), and myosin 15a (Myo15a) all contain MyTH4-FERM domains (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in their cargo binding tails and are essential for the growth and function of microvilli and stereocilia. Numerous mutations have been identified in the MyTH4-FERM tandems of these myosins in patients suffering visual and hearing impairment. Although a number of MF domain binding partners have been identified, the molecular basis of interactions with the C-terminal MF domain (CMF) of these myosins remains poorly understood. Here we report the high-resolution crystal structure of Myo7b CMF in complex with the extended PDZ3 domain of USH1C (a.k.a., Harmonin), revealing a previously uncharacterized interaction mode both for MyTH4-FERM tandems and for PDZ domains. We predicted, based on the structure of the Myo7b CMF/USH1C PDZ3 complex, and verified that Myo7a CMF also binds to USH1C PDZ3 using a similar mode. The structure of the Myo7b CMF/USH1C PDZ complex provides mechanistic explanations for >20 deafness-causing mutations in Myo7a CMF. Taken together, these findings suggest that binding to PDZ domains, such as those from USH1C, PDZD7, and Whirlin, is a common property of CMFs of Myo7a, Myo7b, and Myo15a.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Complexos Multiproteicos/química , Miosinas/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Domínios PDZ , Estrutura Quaternária de Proteína
4.
J Biol Chem ; 291(43): 22781-22792, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27582493

RESUMO

Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.


Assuntos
Actinas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Pseudópodes/metabolismo , Actinas/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Pseudópodes/genética
5.
Dev Cell ; 58(1): 18-33.e6, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626869

RESUMO

Actin-based protrusions extend from the surface of all eukaryotic cells, where they support diverse activities essential for life. Models of protrusion growth hypothesize that actin filament assembly exerts force for pushing the plasma membrane outward. However, membrane-associated myosin motors are also abundant in protrusions, although their potential for contributing, growth-promoting force remains unexplored. Using an inducible system that docks myosin motor domains to membrane-binding modules with temporal control, we found that application of myosin-generated force to the membrane is sufficient for driving robust protrusion elongation in human, mouse, and pig cell culture models. Protrusion growth scaled with motor accumulation, required barbed-end-directed force, and was independent of cargo delivery or recruitment of canonical elongation factors. Application of growth-promoting force was also supported by structurally distinct myosin motors and membrane-binding modules. Thus, myosin-generated force can drive protrusion growth, and this mechanism is likely active in diverse biological contexts.


Assuntos
Actinas , Miosinas , Camundongos , Animais , Humanos , Suínos , Miosinas/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo
6.
Curr Opin Cell Biol ; 44: 68-78, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27836411

RESUMO

Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.


Assuntos
Extensões da Superfície Celular/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Animais , Extensões da Superfície Celular/química , Humanos , Miosinas/análise , Pseudópodes/metabolismo
7.
Curr Biol ; 26(20): 2717-2728, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27666969

RESUMO

Transporting epithelial cells interact with the luminal environment using a tightly packed array of microvilli known as the brush border. During intestinal epithelial differentiation, microvillar packing and organization are driven by cadherin-dependent adhesion complexes that localize to the distal tips of microvilli, where they drive physical interactions between neighboring protrusions. Although enrichment of the "intermicrovillar adhesion complex" (IMAC) at distal tips is required for proper function, the mechanism driving tip accumulation of these factors remains unclear. Here, we report that the actin-based motor myosin-7b (Myo7b) promotes the accumulation of IMAC components at microvillar tips. Myo7b is highly enriched at the tips of microvilli in both kidney and intestinal brush borders, and loss of Myo7b in differentiating intestinal epithelial cells disrupts intermicrovillar adhesion and, thus, brush border assembly. Analysis of cells lacking Myo7b revealed that IMAC components and the resulting intermicrovillar adhesion links are mislocalized along the microvillar axis rather than enriched at the distal tips. We also found that Myo7b motor domains are capable of supporting tip-directed transport. However, motor activity is supplemented by other passive targeting mechanisms that together drive highly efficient IMAC accumulation at the tips. These findings illuminate the molecular basis of IMAC enrichment at microvillar tips and hold important implications for understanding apical morphogenesis in transporting and sensory epithelial tissues.


Assuntos
Células Epiteliais/metabolismo , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Animais , Células CACO-2 , Humanos , Células LLC-PK1 , Cadeias Pesadas de Miosina/metabolismo , Suínos
8.
Dev Cell ; 36(2): 190-200, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26812018

RESUMO

Transporting and sensory epithelial cells shape apical specializations using protocadherin-based adhesion. In the enterocyte brush border, protocadherin function requires a complex of cytoplasmic binding partners, although the composition of this complex and logic governing its assembly remain poorly understood. We found that ankyrin repeat and sterile α motif domain containing 4B (ANKS4B) localizes to the tips of adherent brush border microvilli and is essential for intermicrovillar adhesion. ANKS4B interacts with USH1C and MYO7B, which link protocadherins to the actin cytoskeleton. ANKS4B and USH1C also bind to the MYO7B cargo-binding tail at distinct sites. However, a tripartite complex only forms if ANKS4B and MYO7B are first activated by USH1C. This study uncovers an essential role for ANKS4B in brush border assembly, reveals a hierarchy in the molecular interactions that drive intermicrovillar adhesion, and informs our understanding of diseases caused by mutations in USH1C and ankyrin repeat proteins, such as Usher syndrome.


Assuntos
Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Enterócitos/metabolismo , Microvilosidades/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesão Celular , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto , Células Epiteliais/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa