Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621164

RESUMO

A novel iridium(III) photosensitizer containing pyridinium-decorated terpyridines has been used for the photo-oxidation of chloride in water. Despite its abundance, the very positive one-electron reduction potential (E° Cl•/- = 2.1-2.4 V vs NHE) restricted its use in energy conversion schemes and artificial photosynthesis. The kinetics of the photoinduced electron transfer process were investigated through Stern-Volmer quenching experiments and nanosecond transient absorption spectroscopy, which provided unambiguous evidence that photoinduced chloride oxidation occurred with a quenching rate constant kq = 5.0 × 1010 M-1 s-1. Complementary spectroelectrochemistry and photolysis experiments confirmed the formation of the reduced photosensitizer and showcased the redox and photostability of the Ir(III) photosensitizer that holds great promise for the HX splitting approach.

2.
J Digit Imaging ; 36(6): 2519-2531, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735307

RESUMO

Lung cancer is the second most fatal disease worldwide. In the last few years, radiomics is being explored to develop prediction models for various clinical endpoints in lung cancer. However, the robustness of radiomic features is under question and has been identified as one of the roadblocks in the implementation of a radiomic-based prediction model in the clinic. Many past studies have suggested identifying the robust radiomic feature to develop a prediction model. In our earlier study, we identified robust radiomic features for prediction model development. The objective of this study was to develop and validate the robust radiomic signatures for predicting 2-year overall survival in non-small cell lung cancer (NSCLC). This retrospective study included a cohort of 300 stage I-IV NSCLC patients. Institutional 200 patients' data were included for training and internal validation and 100 patients' data from The Cancer Image Archive (TCIA) open-source image repository for external validation. Radiomic features were extracted from the CT images of both cohorts. The feature selection was performed using hierarchical clustering, a Chi-squared test, and recursive feature elimination (RFE). In total, six prediction models were developed using random forest (RF-Model-O, RF-Model-B), gradient boosting (GB-Model-O, GB-Model-B), and support vector(SV-Model-O, SV-Model-B) classifiers to predict 2-year overall survival (OS) on original data as well as balanced data. Model validation was performed using 10-fold cross-validation, internal validation, and external validation. Using a multistep feature selection method, the overall top 10 features were chosen. On internal validation, the two random forest models (RF-Model-O, RF-Model-B) displayed the highest accuracy; their scores on the original and balanced datasets were 0.81 and 0.77 respectively. During external validation, both the random forest models' accuracy was 0.68. In our study, robust radiomic features showed promising predictive performance to predict 2-year overall survival in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos
3.
J Digit Imaging ; 36(3): 812-826, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36788196

RESUMO

Rising incidence and mortality of cancer have led to an incremental amount of research in the field. To learn from preexisting data, it has become important to capture maximum information related to disease type, stage, treatment, and outcomes. Medical imaging reports are rich in this kind of information but are only present as free text. The extraction of information from such unstructured text reports is labor-intensive. The use of Natural Language Processing (NLP) tools to extract information from radiology reports can make it less time-consuming as well as more effective. In this study, we have developed and compared different models for the classification of lung carcinoma reports using clinical concepts. This study was approved by the institutional ethics committee as a retrospective study with a waiver of informed consent. A clinical concept-based classification pipeline for lung carcinoma radiology reports was developed using rule-based as well as machine learning models and compared. The machine learning models used were XGBoost and two more deep learning model architectures with bidirectional long short-term neural networks. A corpus consisting of 1700 radiology reports including computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) reports were used for development and testing. Five hundred one radiology reports from MIMIC-III Clinical Database version 1.4 was used for external validation. The pipeline achieved an overall F1 score of 0.94 on the internal set and 0.74 on external validation with the rule-based algorithm using expert input giving the best performance. Among the machine learning models, the Bi-LSTM_dropout model performed better than the ML model using XGBoost and the Bi-LSTM_simple model on internal set, whereas on external validation, the Bi-LSTM_simple model performed relatively better than other 2. This pipeline can be used for clinical concept-based classification of radiology reports related to lung carcinoma from a huge corpus and also for automated annotation of these reports.


Assuntos
Carcinoma , Radiologia , Humanos , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Processamento de Linguagem Natural , Pulmão
4.
Eur J Nucl Med Mol Imaging ; 49(8): 2462-2481, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34939174

RESUMO

PURPOSE: Studies based on machine learning-based quantitative imaging techniques have gained much interest in cancer research. The aim of this review is to critically appraise the existing machine learning-based quantitative imaging analysis studies predicting outcomes of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA guidelines. METHODS: A systematic review was conducted in accordance with PRISMA guidelines. The citation search was performed via PubMed and Embase Ovid databases for literature published before April 2021. From each full-text article, study characteristics and model information were summarized. We proposed an appraisal matrix with 13 items to assess the methodological quality of each study based on recommended best-practices pertaining to quality. RESULTS: Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide variation in quality. A total of 30 studies published within the last 5 years were evaluated for methodological quality and we found 11 studies with at least 6 "good" item ratings. CONCLUSION: A substantial number of studies lacked prospective registration, external validation, model calibration, and support for use in clinic. To further improve the predictive power of machine learning-based models and translate into real clinical applications in cancer research, appropriate methodologies, prospective registration, and multi-institution validation are recommended.


Assuntos
Quimiorradioterapia , Neoplasias Esofágicas , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/terapia , Humanos , Aprendizado de Máquina , Prognóstico , Estudos Prospectivos
5.
Methods ; 188: 61-72, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33271285

RESUMO

BACKGROUND: Systemic therapy agents targeting immune checkpoint inhibitors have been approved for use since 2011. This type of therapy aims to trigger a patient's immune response to attack tumor cells, rather than acting against the tumor directly. Radiomics is an automated method of medical image analysis that is now being actively investigated for predictive markers of treatment response in immunotherapy. OBJECTIVE: To conduct an early systematic review determining the current status of radiomic features as potential predictive markers of immunotherapy response. Provide a detailed critical appraisal of methodological quality of models, as this informs the degree of confidence about current reports of model performance. In addition, to offer some recommendations for future studies that could establish robust evidence for radiomic features as immunotherapy response markers. METHOD: A PubMed citation search was conducted for publications up to and including April 2020, followed by full-text screening. A total of seven articles meeting the eligibility criteria were examined in detail for study characteristics, model information and methodological quality. The review was conducted in the Cochrane style but has not been prospectively registered. Results are reported following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) guidelines. RESULTS: A total of seven studies were examined in detail, comprising non-small cell lung cancer, metastatic melanoma and a diverse assortment of solid tumors. Methodological robustness of reviewed studies varied greatly. Principal shortcomings were lack of prospective registration, and deficiencies in feature selection and dimensionality reduction, model calibration, clinical utility and external validation. A few studies with overall moderate to good methodological quality were identified. These results suggest that current state-of-the-art performance of radiomics in regards to discrimination (area under the curve or concordance index) is in the vicinity of 0.7, but the very small number of studies to date prevents any conclusive remarks to be made. We recommended future improvements in regards to prospective study registration, clinical utility, methodological procedure and data sharing. CONCLUSIONS: Radiomics has a potentially significant role for predicting immunotherapy response. Additional multi-institutional studies with robust methodological underpinning and repeated external validations are required to establish the (added) value of radiomics within the pantheon of clinical tools for decision-making in immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Processamento de Imagem Assistida por Computador/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Aprendizado Profundo , Resistencia a Medicamentos Antineoplásicos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Prognóstico , Resultado do Tratamento
6.
J Appl Clin Med Phys ; 23(10): e13739, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906893

RESUMO

BACKGROUND: As a means to extract biomarkers from medical imaging, radiomics has attracted increased attention from researchers. However, reproducibility and performance of radiomics in low-dose CT scans are still poor, mostly due to noise. Deep learning generative models can be used to denoise these images and in turn improve radiomics' reproducibility and performance. However, most generative models are trained on paired data, which can be difficult or impossible to collect. PURPOSE: In this article, we investigate the possibility of denoising low-dose CTs using cycle generative adversarial networks (GANs) to improve radiomics reproducibility and performance based on unpaired datasets. METHODS AND MATERIALS: Two cycle GANs were trained: (1) from paired data, by simulating low-dose CTs (i.e., introducing noise) from high-dose CTs and (2) from unpaired real low dose CTs. To accelerate convergence, during GAN training, a slice-paired training strategy was introduced. The trained GANs were applied to three scenarios: (1) improving radiomics reproducibility in simulated low-dose CT images and (2) same-day repeat low dose CTs (RIDER dataset), and (3) improving radiomics performance in survival prediction. Cycle GAN results were compared with a conditional GAN (CGAN) and an encoder-decoder network (EDN) trained on simulated paired data. RESULTS: The cycle GAN trained on simulated data improved concordance correlation coefficients (CCC) of radiomic features from 0.87 (95%CI, [0.833,0.901]) to 0.93 (95%CI, [0.916,0.949]) on simulated noise CT and from 0.89 (95%CI, [0.881,0.914]) to 0.92 (95%CI, [0.908,0.937]) on the RIDER dataset, as well improving the area under the receiver operating characteristic curve (AUC) of survival prediction from 0.52 (95%CI, [0.511,0.538]) to 0.59 (95%CI, [0.578,0.602]). The cycle GAN trained on real data increased the CCCs of features in RIDER to 0.95 (95%CI, [0.933,0.961]) and the AUC of survival prediction to 0.58 (95%CI, [0.576,0.596]). CONCLUSION: The results show that cycle GANs trained on both simulated and real data can improve radiomics' reproducibility and performance in low-dose CT and achieve similar results compared to CGANs and EDNs.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
7.
J Foot Ankle Surg ; 61(5): 1124-1133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337738

RESUMO

Patients with lower leg chronic exertional compartment syndrome are impaired due to exercise-related pain. Fasciotomy is the surgical gold standard. However, it is unknown whether number of simultaneously opened compartments affects outcome. The purpose of this systematic review was to compare patient-reported outcomes of a 2-compartment fasciotomy with a 4-compartment fasciotomy. Controlled clinical trials (randomized/nonrandomized), cohort studies and case series reporting on outcome following either 2-compartment or 4-compartment fasciotomy for lower leg chronic exertional compartment syndrome were searched until May 31, 2021 in PubMed, EMBASE, and Cochrane. Results were qualitatively synthesized. Risk of bias and levels of evidence were determined. Seven studies reporting on altogether 194 athletes and military personnel (mean age 24 y) were included. Quality assessment revealed a high risk of bias in all studies. Both 2-compartment and 4-compartment fasciotomy were associated with a 50% to 100% "return to activity" rate (in studies reporting group results separately: 2-compartment 90%-100%; 4-compartment 50%-100%) and a 41% to 100% "return to previous activity" rate (in studies reporting group results separately: 2-compartment 82-100%; 4-compartment 50%-100%) without significant differences. Mean Marx activity score of 1 study found a small significant standardized mean difference (0.196 [0.524,0.916]) favoring 4-compartment fasciotomy. Rate of satisfaction (2-compartment 74%-89%; 4-compartment 75%-100%) and residual symptoms (2-compartment 0%-36%; 4-compartment 0%-50%) indicated no group differences. In conclusion, a 2-compartment fasciotomy or a 4-compartment fasciotomy for lower leg chronic exertional compartment syndrome appears to be equally successful. However, included studies were hampered by methodological shortcomings (low sample size, selection bias, heterogeneity and no uniform outcome measures).


Assuntos
Síndromes Compartimentais , Fasciotomia , Adulto , Doença Crônica , Síndrome Compartimental Crônica do Esforço , Síndromes Compartimentais/cirurgia , Fasciotomia/métodos , Humanos , Perna (Membro)/cirurgia , Adulto Jovem
9.
Sensors (Basel) ; 21(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809710

RESUMO

Manual segmentation of muscle and adipose compartments from computed tomography (CT) axial images is a potential bottleneck in early rapid detection and quantification of sarcopenia. A prototype deep learning neural network was trained on a multi-center collection of 3413 abdominal cancer surgery subjects to automatically segment truncal muscle, subcutaneous adipose tissue and visceral adipose tissue at the L3 lumbar vertebral level. Segmentations were externally tested on 233 polytrauma subjects. Although after severe trauma abdominal CT scans are quickly and robustly delivered, with often motion or scatter artefacts, incomplete vertebral bodies or arms that influence image quality, the concordance was generally very good for the body composition indices of Skeletal Muscle Radiation Attenuation (SMRA) (Concordance Correlation Coefficient (CCC) = 0.92), Visceral Adipose Tissue index (VATI) (CCC = 0.99) and Subcutaneous Adipose Tissue Index (SATI) (CCC = 0.99). In conclusion, this article showed an automated and accurate segmentation system to segment the cross-sectional muscle and adipose area L3 lumbar spine level on abdominal CT. Future perspectives will include fine-tuning the algorithm and minimizing the outliers.


Assuntos
Aprendizado Profundo , Traumatismo Múltiplo , Tecido Adiposo/diagnóstico por imagem , Estudos Transversais , Humanos , Traumatismo Múltiplo/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
Acta Oncol ; 56(10): 1277-1285, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28447539

RESUMO

PURPOSE/OBJECTIVE: Chemo-radiotherapy is an established primary curative treatment for anal cancer, but clinically equal rationale for different target doses exists. If joint preferences (physician and patient) are used to determine acceptable tradeoffs in radiotherapy treatment planning, multiple dose plans must be simultaneously explored. We quantified the degree to which different toxicity priorities might be incorporated into treatment plan selection, to elucidate the feasible decision space for shared decision making in anal cancer radiotherapy. MATERIAL AND METHODS: Retrospective plans were generated for 22 anal cancer patients. Multi-criteria optimization handles dynamically changing priorities between clinical objectives while meeting fixed clinical constraints. Four unique dose distributions were designed to represent a wide span of clinically relevant objectives: high-dose preference (60.2 Gy tumor boost and 50.4 Gy to elective nodes with physician-defined order of priorities), low-dose preference (53.75 Gy tumor boost, 45 Gy to elective nodes, physician-defined priorities), bowel sparing preference (lower dose levels and priority for bowel avoidance) and bladder sparing preference (lower dose levels and priority for bladder avoidance). RESULTS: Plans satisfied constraints for target coverage. A senior oncologist approved a random subset of plans for quality assurance. Compared to a high-dose preference, bowel sparing was clinically meaningful at the lower prescribed dose [median change in V45Gy: 234 cm3; inter-quartile range (66; 247); p < .01] and for a bowel sparing preference [median change in V45Gy: 281 cm3; (73; 488); p < .01]. Compared to a high-dose preference, bladder sparing was clinically meaningful at the lower prescribed dose [median change in V35Gy: 13.7%-points; (0.3; 30.6); p < .01] and for a bladder sparing preference [median change in V35Gy: 30.3%-points; (12.4; 43.1); p < .01]. CONCLUSIONS: There is decision space available in anal cancer radiotherapy to incorporate preferences, although tradeoffs are highly patient-dependent. This study demonstrates that preference-informed dose planning is feasible for clinical studies utilizing shared decision making.


Assuntos
Neoplasias do Ânus/radioterapia , Tomada de Decisões , Estudos de Viabilidade , Humanos , Preferência do Paciente , Dosagem Radioterapêutica
12.
Acta Oncol ; 54(6): 889-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25233439

RESUMO

PURPOSE: This study introduces methods to conduct image-guided radiotherapy (IGRT) of the pelvis with either cone-beam computed tomography (CBCT) or planar localization images by relying solely on magnetic resonance imaging (MRI)-based reference images. MATERIAL AND METHODS: Feasibility of MRI-based reference images for IGRT was evaluated against kV CBCT (50 scans, 5 prostate cancer patients) and kV & MV planar (5 & 5 image pairs and patients) localization images by comparing the achieved patient position corrections to those obtained by standard CT-based reference images. T1/T2*-weighted in-phase MRI, Hounsfield unit conversion-based heterogeneous pseudo-CT, and bulk pseudo-CT images were applied for reference against localization CBCTs, and patient position corrections were obtained by automatic image registration. IGRT with planar localization images was performed manually by 10 observers using reference digitally reconstructed radiographs (DRRs) reconstructed from the pseudo-CTs and standard CTs. Quality of pseudo-DRRs against CT-DRRs was evaluated with image similarity metrics. RESULTS: The SDs of differences between CBCT-to-MRI and CBCT-to-CT automatic gray-value registrations were ≤1.0 mm & ≤0.8° and ≤2.5 mm & ≤3.6° with 10 cm diameter cubic VOI and prostate-shaped VOI, respectively. The corresponding values for reference heterogeneous pseudo-CT were ≤1.0 mm & ≤0.7° and ≤2.2 mm & ≤3.3°, respectively. Heterogeneous pseudo-CT was the only type of MRI-based reference image working reliably with automatic bone registration (SDs were ≤0.9 mm & ≤0.7°). The differences include possible residual errors from planning CT to MRI registration. The image similarity metrics were significantly (p≤0.01) better in agreement between heterogeneous pseudo-DRRs and CT-DRRs than between bulk pseudo-DRRs and CT-DRRs. The SDs of differences in manual registrations (3D) with planar kV and MV localization images were ≤1.0 mm and ≤1.7 mm, respectively, between heterogeneous pseudo-DRRs and CT-DRRs, and ≤1.4 mm and ≤2.1 mm between bulk pseudo-DRRs and CT-DRRs. CONCLUSION: This study demonstrated that it is feasible to conduct IGRT of the pelvis with MRI-based reference images.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Imageamento por Ressonância Magnética , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Estudos de Viabilidade , Humanos , Masculino , Pelve/diagnóstico por imagem , Pelve/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Planejamento da Radioterapia Assistida por Computador
13.
BJR Open ; 6(1): tzad008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352184

RESUMO

Objectives: Radiation therapy for lung cancer requires a gross tumour volume (GTV) to be carefully outlined by a skilled radiation oncologist (RO) to accurately pinpoint high radiation dose to a malignant mass while simultaneously minimizing radiation damage to adjacent normal tissues. This is manually intensive and tedious however, it is feasible to train a deep learning (DL) neural network that could assist ROs to delineate the GTV. However, DL trained on large openly accessible data sets might not perform well when applied to a superficially similar task but in a different clinical setting. In this work, we tested the performance of DL automatic lung GTV segmentation model trained on open-access Dutch data when used on Indian patients from a large public tertiary hospital, and hypothesized that generic DL performance could be improved for a specific local clinical context, by means of modest transfer-learning on a small representative local subset. Methods: X-ray computed tomography (CT) series in a public data set called "NSCLC-Radiomics" from The Cancer Imaging Archive was first used to train a DL-based lung GTV segmentation model (Model 1). Its performance was assessed using a different open access data set (Interobserver1) of Dutch subjects plus a private Indian data set from a local tertiary hospital (Test Set 2). Another Indian data set (Retrain Set 1) was used to fine-tune the former DL model using a transfer learning method. The Indian data sets were taken from CT of a hybrid scanner based in nuclear medicine, but the GTV was drawn by skilled Indian ROs. The final (after fine-tuning) model (Model 2) was then re-evaluated in "Interobserver1" and "Test Set 2." Dice similarity coefficient (DSC), precision, and recall were used as geometric segmentation performance metrics. Results: Model 1 trained exclusively on Dutch scans showed a significant fall in performance when tested on "Test Set 2." However, the DSC of Model 2 recovered by 14 percentage points when evaluated in the same test set. Precision and recall showed a similar rebound of performance after transfer learning, in spite of using a comparatively small sample size. The performance of both models, before and after the fine-tuning, did not significantly change the segmentation performance in "Interobserver1." Conclusions: A large public open-access data set was used to train a generic DL model for lung GTV segmentation, but this did not perform well initially in the Indian clinical context. Using transfer learning methods, it was feasible to efficiently and easily fine-tune the generic model using only a small number of local examples from the Indian hospital. This led to a recovery of some of the geometric segmentation performance, but the tuning did not appear to affect the performance of the model in another open-access data set. Advances in knowledge: Caution is needed when using models trained on large volumes of international data in a local clinical setting, even when that training data set is of good quality. Minor differences in scan acquisition and clinician delineation preferences may result in an apparent drop in performance. However, DL models have the advantage of being efficiently "adapted" from a generic to a locally specific context, with only a small amount of fine-tuning by means of transfer learning on a small local institutional data set.

14.
JCO Clin Cancer Inform ; 8: e2400054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38950319

RESUMO

There has been growing interest in the use of real-world data (RWD) to address clinically and policy-relevant (research) questions that cannot be answered with data from randomized controlled trials (RCTs) alone. This is, for example, the case in rare malignancies such as sarcomas as limited patient numbers pose challenges in conducting RCTs within feasible timeliness, a manageable number of collaborators, and statistical power. This narrative review explores the potential of RWD to generate real-world evidence (RWE) in sarcoma research, elucidating its application across different phases of the patient journey, from prediagnosis to the follow-up/survivorship phase. For instance, examining electronic health records (EHRs) from general practitioners (GPs) enables the exploration of consultation frequency and presenting symptoms in primary care before a sarcoma diagnosis. In addition, alternative study designs that integrate RWD with well-designed observational RCTs may offer relevant information on the effectiveness of clinical treatments. As, especially in cases of ultrarare sarcomas, it can be an extreme challenge to perform well-powered randomized prospective studies. Therefore, it is crucial to support the adaptation of novel study designs. Regarding the follow-up/survivorship phase, examining EHR from primary and secondary care can provide valuable insights into identifying the short- and long-term effects of treatment over an extended follow-up period. The utilization of RWD also comes with several challenges, including issues related to data quality and privacy, as described in this study. Notwithstanding these challenges, this study underscores the potential of RWD to bridge, at least partially, gaps between evidence and practice and holds promise in contributing to the improvement of sarcoma care.


Assuntos
Registros Eletrônicos de Saúde , Clínicos Gerais , Sarcoma , Humanos , Sarcoma/terapia , Sarcoma/diagnóstico , Coleta de Dados/métodos , Ensaios Clínicos como Assunto , Estudos Prospectivos
15.
Sci Rep ; 14(1): 7814, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570606

RESUMO

Predictive modelling of cancer outcomes using radiomics faces dimensionality problems and data limitations, as radiomics features often number in the hundreds, and multi-institutional data sharing is ()often unfeasible. Federated learning (FL) and feature selection (FS) techniques combined can help overcome these issues, as one provides the means of training models without exchanging sensitive data, while the other identifies the most informative features, reduces overfitting, and improves model interpretability. Our proposed FS pipeline based on FL principles targets data-driven radiomics FS in a multivariate survival study of non-small cell lung cancer patients. The pipeline was run across datasets from three institutions without patient-level data exchange. It includes two FS techniques, Correlation-based Feature Selection and LASSO regularization, and Cox Proportional-Hazard regression with Overall Survival as endpoint. Trained and validated on 828 patients overall, our pipeline yielded a radiomic signature comprising "intensity-based energy" and "mean discretised intensity". Validation resulted in a mean Harrell C-index of 0.59, showcasing fair efficacy in risk stratification. In conclusion, we suggest a distributed radiomics approach that incorporates preliminary feature selection to systematically decrease the feature set based on data-driven considerations. This aims to address dimensionality challenges beyond those associated with data constraints and interpretability concerns.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Radiômica , Neoplasias Pulmonares/diagnóstico por imagem , Análise de Sobrevida , Instalações de Saúde
16.
Comput Biol Med ; 169: 107939, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194781

RESUMO

Accurate and automated segmentation of breast tumors in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a critical role in computer-aided diagnosis and treatment of breast cancer. However, this task is challenging, due to random variation in tumor sizes, shapes, appearances, and blurred boundaries of tumors caused by inherent heterogeneity of breast cancer. Moreover, the presence of ill-posed artifacts in DCE-MRI further complicate the process of tumor region annotation. To address the challenges above, we propose a scheme (named SwinHR) integrating prior DCE-MRI knowledge and temporal-spatial information of breast tumors. The prior DCE-MRI knowledge refers to hemodynamic information extracted from multiple DCE-MRI phases, which can provide pharmacokinetics information to describe metabolic changes of the tumor cells over the scanning time. The Swin Transformer with hierarchical re-parameterization large kernel architecture (H-RLK) can capture long-range dependencies within DCE-MRI while maintaining computational efficiency by a shifted window-based self-attention mechanism. The use of H-RLK can extract high-level features with a wider receptive field, which can make the model capture contextual information at different levels of abstraction. Extensive experiments are conducted in large-scale datasets to validate the effectiveness of our proposed SwinHR scheme, demonstrating its superiority over recent state-of-the-art segmentation methods. Also, a subgroup analysis split by MRI scanners, field strength, and tumor size is conducted to verify its generalization. The source code is released on (https://github.com/GDPHMediaLab/SwinHR).


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Diagnóstico por Computador , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Software , Processamento de Imagem Assistida por Computador
17.
Radiat Oncol ; 19(1): 10, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254106

RESUMO

OBJECTIVES: Stereotactic body radiotherapy (SBRT) is a treatment option for patients with early-stage non-small cell lung cancer (NSCLC) who are unfit for surgery. Some patients may experience distant metastasis. This study aimed to develop and validate a radiomics model for predicting distant metastasis in patients with early-stage NSCLC treated with SBRT. METHODS: Patients at five institutions were enrolled in this study. Radiomics features were extracted based on the PET/CT images. After feature selection in the training set (from Tianjin), CT-based and PET-based radiomics signatures were built. Models based on CT and PET signatures were built and validated using external datasets (from Zhejiang, Zhengzhou, Shandong, and Shanghai). An integrated model that included CT and PET radiomic signatures was developed. The performance of the proposed model was evaluated in terms of its discrimination, calibration, and clinical utility. Multivariate logistic regression was used to calculate the probability of distant metastases. The cutoff value was obtained using the receiver operator characteristic curve (ROC), and the patients were divided into high- and low-risk groups. Kaplan-Meier analysis was used to evaluate the distant metastasis-free survival (DMFS) of different risk groups. RESULTS: In total, 228 patients were enrolled. The median follow-up time was 31.4 (2.0-111.4) months. The model based on CT radiomics signatures had an area under the curve (AUC) of 0.819 in the training set (n = 139) and 0.786 in the external dataset (n = 89). The PET radiomics model had an AUC of 0.763 for the training set and 0.804 for the external dataset. The model combining CT and PET radiomics had an AUC of 0.835 for the training set and 0.819 for the external dataset. The combined model showed a moderate calibration and a positive net benefit. When the probability of distant metastasis was greater than 0.19, the patient was considered to be at high risk. The DMFS of patients with high- and low-risk was significantly stratified (P < 0.001). CONCLUSIONS: The proposed PET/CT radiomics model can be used to predict distant metastasis in patients with early-stage NSCLC treated with SBRT and provide a reference for clinical decision-making. In this study, the model was established by combining CT and PET radiomics signatures in a moderate-quantity training cohort of early-stage NSCLC patients treated with SBRT and was successfully validated in independent cohorts. Physicians could use this easy-to-use model to assess the risk of distant metastasis after SBRT. Identifying subgroups of patients with different risk factors for distant metastasis is useful for guiding personalized treatment approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiômica , China , Fatores de Risco
18.
J Appl Clin Med Phys ; 14(4): 4249, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23835391

RESUMO

This study evaluated the agreement of fiducial marker localization between two modalities--an electronic portal imaging device (EPID) and cone-beam computed tomography (CBCT)--using a low-dose, half-rotation scanning protocol. Twenty-five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half-rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker-matching algorithms, seed-chamfer and grey-value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland-Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter-rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior-inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half-rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed-chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey-value matching algorithm with EPID-based registration.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Marcadores Fiduciais , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Algoritmos , Equipamentos e Provisões Elétricas , Humanos , Masculino , Interpretação de Imagem Radiográfica Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Rotação
19.
Med Phys ; 50(7): 4220-4233, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37102270

RESUMO

BACKGROUND: Cancer prognosis before and after treatment is key for patient management and decision making. Handcrafted imaging biomarkers-radiomics-have shown potential in predicting prognosis. PURPOSE: However, given the recent progress in deep learning, it is timely and relevant to pose the question: could deep learning based 3D imaging features be used as imaging biomarkers and outperform radiomics? METHODS: Effectiveness, reproducibility in test/retest, across modalities, and correlation of deep features with clinical features such as tumor volume and TNM staging were tested in this study. Radiomics was introduced as the reference image biomarker. For deep feature extraction, we transformed the CT scans into videos, and we adopted the pre-trained Inflated 3D ConvNet (I3D) video classification network as the architecture. We used four datasets-LUNG 1 (n = 422), LUNG 4 (n = 106), OPC (n = 605), and H&N 1 (n = 89)-with 1270 samples from different centers and cancer types-lung and head and neck cancer-to test deep features' predictiveness and two additional datasets to assess the reproducibility of deep features. RESULTS: Support Vector Machine-Recursive Feature Elimination (SVM-RFE) selected top 100 deep features achieved a concordance index (CI) of 0.67 in survival prediction in LUNG 1, 0.87 in LUNG 4, 0.76 in OPC, and 0.87 in H&N 1, while SVM-RFE selected top 100 radiomics achieved CIs of 0.64, 0.77, 0.73, and 0.74, respectively, all statistically significant differences (p < 0.01, Wilcoxon's test). Most selected deep features are not correlated with tumor volume and TNM staging. However, full radiomics features show higher reproducibility than full deep features in a test/retest setting (0.89 vs. 0.62, concordance correlation coefficient). CONCLUSION: The results show that deep features can outperform radiomics while providing different views for tumor prognosis compared to tumor volume and TNM staging. However, deep features suffer from lower reproducibility than radiomic features and lack the interpretability of the latter.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Estudos de Viabilidade , Neoplasias Pulmonares/diagnóstico por imagem , Biomarcadores
20.
Phys Med Biol ; 68(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36753766

RESUMO

Purpose. There is a growing number of publications on the application of unpaired image-to-image (I2I) translation in medical imaging. However, a systematic review covering the current state of this topic for medical physicists is lacking. The aim of this article is to provide a comprehensive review of current challenges and opportunities for medical physicists and engineers to apply I2I translation in practice.Methods and materials. The PubMed electronic database was searched using terms referring to unpaired (unsupervised), I2I translation, and medical imaging. This review has been reported in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. From each full-text article, we extracted information extracted regarding technical and clinical applications of methods, Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) study type, performance of algorithm and accessibility of source code and pre-trained models.Results. Among 461 unique records, 55 full-text articles were included in the review. The major technical applications described in the selected literature are segmentation (26 studies), unpaired domain adaptation (18 studies), and denoising (8 studies). In terms of clinical applications, unpaired I2I translation has been used for automatic contouring of regions of interest in MRI, CT, x-ray and ultrasound images, fast MRI or low dose CT imaging, CT or MRI only based radiotherapy planning, etc Only 5 studies validated their models using an independent test set and none were externally validated by independent researchers. Finally, 12 articles published their source code and only one study published their pre-trained models.Conclusion. I2I translation of medical images offers a range of valuable applications for medical physicists. However, the scarcity of external validation studies of I2I models and the shortage of publicly available pre-trained models limits the immediate applicability of the proposed methods in practice.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Ultrassonografia , Algoritmos , Física
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa