Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 34(24): 7021-7027, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29786433

RESUMO

Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of poly(ethylene glycol) solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in the solution is assigned to the long-range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling ( D ∼ N-1), indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.

2.
Rev Sci Instrum ; 88(9): 093102, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964231

RESUMO

Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.

3.
J Phys Chem B ; 121(6): 1248-1257, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28106397

RESUMO

Detergents are commonly applied in lipase assays to solubilize sparingly soluble model substrates. However, detergents affect lipases as well as substrates in multiple ways. The effect of detergents on lipase activity is commonly attributed to conformational changes in the lid region. This study deals with the effect of the nonionic detergent, poly(ethylene glycol) dodecyl ether, on a lipase that does not contain a lid sequence, lipase A from Bacillus subtilis (BSLA). We show that BSLA activity depends strongly on the detergent concentration and the dependency profile changes with pH. The interaction of BSLA with detergent monomers and micelles is studied using fluorescence correlation spectroscopy, time-resolved anisotropy decay, and temperature-induced unfolding. Detergent-dependent hydrolysis kinetics of two different substrates at two pH values are fitted with a microkinetic model. This analysis shows that the mechanism of interfacial lipase catalysis is strongly affected by the detergent. It reveals an activation mechanism by monomeric detergent that does not result from structural changes of the lipase. Instead, we propose that interfacial diffusion of the lipase is enhanced by detergent binding.


Assuntos
Detergentes/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres/farmacologia , Lipase/antagonistas & inibidores , Polietilenoglicóis/farmacologia , Bacillus subtilis/enzimologia , Detergentes/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Éteres/química , Cinética , Lipase/metabolismo , Estrutura Molecular , Polietilenoglicóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa