Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(11): 118102, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242730

RESUMO

The fine interplay between the simultaneous stretching and confinement of amyloid fibrils is probed by combining a microcapillary setup with atomic force microscopy. Single-molecule statistics reveal how the stretching of fibrils changed from force to confinement dominated at different length scales. System order, however, is solely ruled by confinement. Coarse-grained simulations support the results and display the potential to tailor system properties by tuning the two effects. These findings may further help shed light on in vivo amyloid fibril growth and transport in highly confined environments such as blood vessels.


Assuntos
Amiloide/química , Modelos Químicos , Amiloide/metabolismo , Simulação por Computador , Microscopia de Força Atômica/métodos
2.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631499

RESUMO

Vital gluten is increasingly researched as a non-food product for biodegradable materials. During processing, the protein network is confronted with increased thermal and mechanical stress, altering the network characteristics. With the prospect of using the protein for materials beyond food, it is important to understand the mechanical properties at various processing temperatures. To achieve this, the study investigates hydrated vital gluten under thermomechanical stress based on large amplitude oscillatory shear (LAOS) rheology. LAOS rheology was conducted at increasing shear strains (0.01-100%), various frequencies (5-20 rad/s) and temperatures of 25, 45, 55, 65, 70 and 85 °C. With elevating temperatures up to 55 °C, the linear viscoelastic moduli decrease, indicating material softening. Then, protein polymerization and the formation of new cross-links due to thermal denaturation cause more network connectivity, resulting in significantly higher elastic moduli. Beyond the linear viscoelastic regime, the strain-stiffening ratio rises disproportionately. This effect becomes even more evident at higher temperatures. Lacking a viscous contribution, the highly elastic but also stiff network shows less mechanical resilience. Additionally, at these elevated temperatures, structural changes during the protein's denaturation and network shrinkage due to water evaporation could be visualized with confocal laser scanning microscopy (CLSM).

3.
Int J Biol Macromol ; 173: 26-33, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422515

RESUMO

The protein vital gluten is mainly used for food while interest for non-food applications, like biodegradable materials, increases. In general, the structure and functionality of proteins is highly dependent on thermal treatments during production or modification. This study presents conformational changes and corresponding rheological effects of vital wheat gluten depending on temperature. Dry samples analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermalgravimetric analysis coupled with mass spectrometry (TGA-MS) show surface compositions and conformational changes from 25 to 250 °C. Above 170 °C, XPS reveals a decreased N content at the surface while FTIR band characteristics for ß-sheets prove structural changes. At 250 °C, protein denaturation accompanied by a significant mass loss due to dehydration and decarbonylation reactions is observed. Oscillatory measurements of optimally hydrated vital gluten describing network properties of the material show two structural changes along a temperature ramp from 25 to 90 °C: at 56-64 °C, the temperature necessary to trigger structural changes increases with the ratio of gliadin to total protein mass, determined by reversed-phase high performance liquid chromatography (RP-HPLC). At a temperature of 79-81 °C, complete protein denaturation occurs. FTIR confirms the denaturation process by showing band shifts with both temperature steps.


Assuntos
Gliadina/química , Glutens/química , Água/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia Fotoeletrônica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Desnaturação Proteica , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa