Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572754

RESUMO

PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic variants, diseases and chemicals. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery.

2.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38514400

RESUMO

MOTIVATION: Large Language Models (LLMs) have the potential to revolutionize the field of Natural Language Processing, excelling not only in text generation and reasoning tasks but also in their ability for zero/few-shot learning, swiftly adapting to new tasks with minimal fine-tuning. LLMs have also demonstrated great promise in biomedical and healthcare applications. However, when it comes to Named Entity Recognition (NER), particularly within the biomedical domain, LLMs fall short of the effectiveness exhibited by fine-tuned domain-specific models. One key reason is that NER is typically conceptualized as a sequence labeling task, whereas LLMs are optimized for text generation and reasoning tasks. RESULTS: We developed an instruction-based learning paradigm that transforms biomedical NER from a sequence labeling task into a generation task. This paradigm is end-to-end and streamlines the training and evaluation process by automatically repurposing pre-existing biomedical NER datasets. We further developed BioNER-LLaMA using the proposed paradigm with LLaMA-7B as the foundational LLM. We conducted extensive testing on BioNER-LLaMA across three widely recognized biomedical NER datasets, consisting of entities related to diseases, chemicals, and genes. The results revealed that BioNER-LLaMA consistently achieved higher F1-scores ranging from 5% to 30% compared to the few-shot learning capabilities of GPT-4 on datasets with different biomedical entities. We show that a general-domain LLM can match the performance of rigorously fine-tuned PubMedBERT models and PMC-LLaMA, biomedical-specific language model. Our findings underscore the potential of our proposed paradigm in developing general-domain LLMs that can rival SOTA performances in multi-task, multi-domain scenarios in biomedical and health applications. AVAILABILITY AND IMPLEMENTATION: Datasets and other resources are available at https://github.com/BIDS-Xu-Lab/BioNER-LLaMA.


Assuntos
Camelídeos Americanos , Aprendizado Profundo , Animais , Idioma , Processamento de Linguagem Natural
3.
Nucleic Acids Res ; 51(D1): D1512-D1518, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350613

RESUMO

LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/)-first launched in February 2020-is a first-of-its-kind literature hub for tracking up-to-date published research on COVID-19. The number of articles in LitCovid has increased from 55 000 to ∼300 000 over the past 2.5 years, with a consistent growth rate of ∼10 000 articles per month. In addition to the rapid literature growth, the COVID-19 pandemic has evolved dramatically. For instance, the Omicron variant has now accounted for over 98% of new infections in the United States. In response to the continuing evolution of the COVID-19 pandemic, this article describes significant updates to LitCovid over the last 2 years. First, we introduced the long Covid collection consisting of the articles on COVID-19 survivors experiencing ongoing multisystemic symptoms, including respiratory issues, cardiovascular disease, cognitive impairment, and profound fatigue. Second, we provided new annotations on the latest COVID-19 strains and vaccines mentioned in the literature. Third, we improved several existing features with more accurate machine learning algorithms for annotating topics and classifying articles relevant to COVID-19. LitCovid has been widely used with millions of accesses by users worldwide on various information needs and continues to play a critical role in collecting, curating and standardizing the latest knowledge on the COVID-19 literature.


Assuntos
COVID-19 , Bases de Dados Bibliográficas , Humanos , COVID-19/epidemiologia , Pandemias , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Estados Unidos
4.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35849818

RESUMO

Automated relation extraction (RE) from biomedical literature is critical for many downstream text mining applications in both research and real-world settings. However, most existing benchmarking datasets for biomedical RE only focus on relations of a single type (e.g. protein-protein interactions) at the sentence level, greatly limiting the development of RE systems in biomedicine. In this work, we first review commonly used named entity recognition (NER) and RE datasets. Then, we present a first-of-its-kind biomedical relation extraction dataset (BioRED) with multiple entity types (e.g. gene/protein, disease, chemical) and relation pairs (e.g. gene-disease; chemical-chemical) at the document level, on a set of 600 PubMed abstracts. Furthermore, we label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information. We assess the utility of BioRED by benchmarking several existing state-of-the-art methods, including Bidirectional Encoder Representations from Transformers (BERT)-based models, on the NER and RE tasks. Our results show that while existing approaches can reach high performance on the NER task (F-score of 89.3%), there is much room for improvement for the RE task, especially when extracting novel relations (F-score of 47.7%). Our experiments also demonstrate that such a rich dataset can successfully facilitate the development of more accurate, efficient and robust RE systems for biomedicine. Availability: The BioRED dataset and annotation guidelines are freely available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/.


Assuntos
Algoritmos , Mineração de Dados , Proteínas , PubMed
5.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37171899

RESUMO

MOTIVATION: Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The resulting data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single entity type at a time (e.g. gene or disease). RESULTS: We therefore propose a novel all-in-one (AIO) scheme that uses external data from existing annotated resources to enhance the accuracy and stability of BioNER models. We further present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our AIO schema. We evaluate AIONER on 14 BioNER benchmark tasks and show that AIONER is effective, robust, and compares favorably to other state-of-the-art approaches such as multi-task learning. We further demonstrate the practical utility of AIONER in three independent tasks to recognize entity types not previously seen in training data, as well as the advantages of AIONER over existing methods for processing biomedical text at a large scale (e.g. the entire PubMed data). AVAILABILITY AND IMPLEMENTATION: The source code, trained models and data for AIONER are freely available at https://github.com/ncbi/AIONER.


Assuntos
Aprendizado Profundo , Mineração de Dados/métodos , Software , Idioma , PubMed
6.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37878810

RESUMO

MOTIVATION: Gene name normalization is an important yet highly complex task in biomedical text mining research, as gene names can be highly ambiguous and may refer to different genes in different species or share similar names with other bioconcepts. This poses a challenge for accurately identifying and linking gene mentions to their corresponding entries in databases such as NCBI Gene or UniProt. While there has been a body of literature on the gene normalization task, few have addressed all of these challenges or make their solutions publicly available to the scientific community. RESULTS: Building on the success of GNormPlus, we have created GNorm2: a more advanced tool with optimized functions and improved performance. GNorm2 integrates a range of advanced deep learning-based methods, resulting in the highest levels of accuracy and efficiency for gene recognition and normalization to date. Our tool is freely available for download. AVAILABILITY AND IMPLEMENTATION: https://github.com/ncbi/GNorm2.


Assuntos
Mineração de Dados , Mineração de Dados/métodos , Bases de Dados Factuais
7.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32770181

RESUMO

MOTIVATION: To obtain key information for personalized medicine and cancer research, clinicians and researchers in the biomedical field are in great need of searching genomic variant information from the biomedical literature now than ever before. Due to the various written forms of genomic variants, however, it is difficult to locate the right information from the literature when using a general literature search system. To address the difficulty of locating genomic variant information from the literature, researchers have suggested various solutions based on automated literature-mining techniques. There is, however, no study for summarizing and comparing existing tools for genomic variant literature mining in terms of how to search easily for information in the literature on genomic variants. RESULTS: In this article, we systematically compared currently available genomic variant recognition and normalization tools as well as the literature search engines that adopted these literature-mining techniques. First, we explain the problems that are caused by the use of non-standard formats of genomic variants in the PubMed literature by considering examples from the literature and show the prevalence of the problem. Second, we review literature-mining tools that address the problem by recognizing and normalizing the various forms of genomic variants in the literature and systematically compare them. Third, we present and compare existing literature search engines that are designed for a genomic variant search by using the literature-mining techniques. We expect this work to be helpful for researchers who seek information about genomic variants from the literature, developers who integrate genomic variant information from the literature and beyond.


Assuntos
Mineração de Dados , Variação Genética , Medicina de Precisão , Ferramenta de Busca , PubMed , Publicações
8.
Bioinformatics ; 38(18): 4449-4451, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904569

RESUMO

MOTIVATION: Previous studies have shown that automated text-mining tools are becoming increasingly important for successfully unlocking variant information in scientific literature at large scale. Despite multiple attempts in the past, existing tools are still of limited recognition scope and precision. RESULT: We propose tmVar 3.0: an improved variant recognition and normalization system. Compared to its predecessors, tmVar 3.0 recognizes a wider spectrum of variant-related entities (e.g. allele and copy number variants), and groups together different variant mentions belonging to the same genomic sequence position in an article for improved accuracy. Moreover, tmVar 3.0 provides advanced variant normalization options such as allele-specific identifiers from the ClinGen Allele Registry. tmVar 3.0 exhibits state-of-the-art performance with over 90% in F-measure for variant recognition and normalization, when evaluated on three independent benchmarking datasets. tmVar 3.0 as well as annotations for the entire PubMed and PMC datasets are freely available for download. AVAILABILITY AND IMPLEMENTATION: https://github.com/ncbi/tmVar3.


Assuntos
Mineração de Dados , Publicações , PubMed , Genômica
9.
PLoS Biol ; 18(6): e3000716, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479517

RESUMO

Data-driven research in biomedical science requires structured, computable data. Increasingly, these data are created with support from automated text mining. Text-mining tools have rapidly matured: although not perfect, they now frequently provide outstanding results. We describe 10 straightforward writing tips-and a web tool, PubReCheck-guiding authors to help address the most common cases that remain difficult for text-mining tools. We anticipate these guides will help authors' work be found more readily and used more widely, ultimately increasing the impact of their work and the overall benefit to both authors and readers. PubReCheck is available at http://www.ncbi.nlm.nih.gov/research/pubrecheck.


Assuntos
Mineração de Dados , Automação , Internet , Software
10.
J Biomed Inform ; 146: 104487, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673376

RESUMO

Biomedical relation extraction (RE) is the task of automatically identifying and characterizing relations between biomedical concepts from free text. RE is a central task in biomedical natural language processing (NLP) research and plays a critical role in many downstream applications, such as literature-based discovery and knowledge graph construction. State-of-the-art methods were used primarily to train machine learning models on individual RE datasets, such as protein-protein interaction and chemical-induced disease relation. Manual dataset annotation, however, is highly expensive and time-consuming, as it requires domain knowledge. Existing RE datasets are usually domain-specific or small, which limits the development of generalized and high-performing RE models. In this work, we present a novel framework for systematically addressing the data heterogeneity of individual datasets and combining them into a large dataset. Based on the framework and dataset, we report on BioREx, a data-centric approach for extracting relations. Our evaluation shows that BioREx achieves significantly higher performance than the benchmark system trained on the individual dataset, setting a new SOTA from 74.4% to 79.6% in F-1 measure on the recently released BioRED corpus. We further demonstrate that the combined dataset can improve performance for five different RE tasks. In addition, we show that on average BioREx compares favorably to current best-performing methods such as transfer learning and multi-task learning. Finally, we demonstrate BioREx's robustness and generalizability in two independent RE tasks not previously seen in training data: drug-drug N-ary combination and document-level gene-disease RE. The integrated dataset and optimized method have been packaged as a stand-alone tool available at https://github.com/ncbi/BioREx.

11.
PLoS Comput Biol ; 16(4): e1007617, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324731

RESUMO

A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings-which involve the learning of vector representations of concepts using machine learning models-have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Aprendizado Profundo , Publicações , Algoritmos , Bases de Dados de Proteínas , Interações Medicamentosas , Registros Eletrônicos de Saúde , Humanos , Mapeamento de Interação de Proteínas , PubMed , Semântica
12.
J Biomed Inform ; 118: 103779, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839304

RESUMO

The automatic recognition of gene names and their corresponding database identifiers in biomedical text is an important first step for many downstream text-mining applications. While current methods for tagging gene entities have been developed for biomedical literature, their performance on species other than human is substantially lower due to the lack of annotation data. We therefore present the NLM-Gene corpus, a high-quality manually annotated corpus for genes developed at the US National Library of Medicine (NLM), covering ambiguous gene names, with an average of 29 gene mentions (10 unique identifiers) per document, and a broader representation of different species (including Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, etc.) when compared to previous gene annotation corpora. NLM-Gene consists of 550 PubMed abstracts from 156 biomedical journals, doubly annotated by six experienced NLM indexers, randomly paired for each document to control for bias. The annotators worked in three annotation rounds until they reached complete agreement. This gold-standard corpus can serve as a benchmark to develop & test new gene text mining algorithms. Using this new resource, we have developed a new gene finding algorithm based on deep learning which improved both on precision and recall from existing tools. The NLM-Gene annotated corpus is freely available at ftp://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene. We have also applied this tool to the entire PubMed/PMC with their results freely accessible through our web-based tool PubTator (www.ncbi.nlm.nih.gov/research/pubtator).


Assuntos
Drosophila melanogaster , Genes vif , Animais , Mineração de Dados , National Library of Medicine (U.S.) , PubMed , Ratos , Estados Unidos
13.
Nucleic Acids Res ; 47(W1): W587-W593, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114887

RESUMO

PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases.


Assuntos
Mineração de Dados/métodos , Software , Linhagem Celular , Curadoria de Dados , Doença , Genes , Variação Genética , Humanos , Proteínas , PubMed , Interface Usuário-Computador
14.
Bioinformatics ; 35(18): 3533-3535, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715220

RESUMO

MOTIVATION: Interest in text mining full-text biomedical research articles is growing. To facilitate automated processing of nearly 3 million full-text articles (in PubMed Central® Open Access and Author Manuscript subsets) and to improve interoperability, we convert these articles to BioC, a community-driven simple data structure in either XML or JavaScript Object Notation format for conveniently sharing text and annotations. RESULTS: The resultant articles can be downloaded via both File Transfer Protocol for bulk access and a Web API for updates or a more focused collection. Since the availability of the Web API in 2017, our BioC collection has been widely used by the research community. AVAILABILITY AND IMPLEMENTATION: https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC/.


Assuntos
Mineração de Dados , Algoritmos , Pesquisa Biomédica , PubMed
15.
Nucleic Acids Res ; 46(W1): W523-W529, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29788413

RESUMO

Recently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop. ezTag supports both abstracts in PubMed and full-text articles in PubMed Central. It also provides lexicon-based concept tagging as well as the state-of-the-art pre-trained taggers such as TaggerOne, GNormPlus and tmVar. ezTag is freely available at http://eztag.bioqrator.org.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Treinamento por Simulação/métodos , Interface Usuário-Computador , Humanos , Internet , PubMed
16.
Nucleic Acids Res ; 46(W1): W530-W536, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29762787

RESUMO

The identification and interpretation of genomic variants play a key role in the diagnosis of genetic diseases and related research. These tasks increasingly rely on accessing relevant manually curated information from domain databases (e.g. SwissProt or ClinVar). However, due to the sheer volume of medical literature and high cost of expert curation, curated variant information in existing databases are often incomplete and out-of-date. In addition, the same genetic variant can be mentioned in publications with various names (e.g. 'A146T' versus 'c.436G>A' versus 'rs121913527'). A search in PubMed using only one name usually cannot retrieve all relevant articles for the variant of interest. Hence, to help scientists, healthcare professionals, and database curators find the most up-to-date published variant research, we have developed LitVar for the search and retrieval of standardized variant information. In addition, LitVar uses advanced text mining techniques to compute and extract relationships between variants and other associated entities such as diseases and chemicals/drugs. LitVar is publicly available at https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Polimorfismo de Nucleotídeo Único , Ferramenta de Busca , Interface Usuário-Computador , Genética Médica , Genoma Humano , Genômica/métodos , Humanos , Internet , PubMed , Semântica
17.
Bioinformatics ; 34(1): 80-87, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968638

RESUMO

Motivation: Despite significant efforts in expert curation, clinical relevance about most of the 154 million dbSNP reference variants (RS) remains unknown. However, a wealth of knowledge about the variant biological function/disease impact is buried in unstructured literature data. Previous studies have attempted to harvest and unlock such information with text-mining techniques but are of limited use because their mutation extraction results are not standardized or integrated with curated data. Results: We propose an automatic method to extract and normalize variant mentions to unique identifiers (dbSNP RSIDs). Our method, in benchmarking results, demonstrates a high F-measure of ∼90% and compared favorably to the state of the art. Next, we applied our approach to the entire PubMed and validated the results by verifying that each extracted variant-gene pair matched the dbSNP annotation based on mapped genomic position, and by analyzing variants curated in ClinVar. We then determined which text-mined variants and genes constituted novel discoveries. Our analysis reveals 41 889 RS numbers (associated with 9151 genes) not found in ClinVar. Moreover, we obtained a rich set worth further review: 12 462 rare variants (MAF ≤ 0.01) in 3849 genes which are presumed to be deleterious and not frequently found in the general population. To our knowledge, this is the first large-scale study to analyze and integrate text-mined variant data with curated knowledge in existing databases. Our results suggest that databases can be significantly enriched by text mining and that the combined information can greatly assist human efforts in evaluating/prioritizing variants in genomic research. Availability and implementation: The tmVar 2.0 source code and corpus are freely available at https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/. Contact: zhiyong.lu@nih.gov.


Assuntos
Mineração de Dados/métodos , Mutação , Polimorfismo Genético , Medicina de Precisão/métodos , Software , Curadoria de Dados , Bases de Dados Factuais , Predisposição Genética para Doença , Genômica/métodos , Humanos , Fenótipo , PubMed , Publicações
18.
PLoS Comput Biol ; 14(8): e1006390, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102703

RESUMO

Manually curating biomedical knowledge from publications is necessary to build a knowledge based service that provides highly precise and organized information to users. The process of retrieving relevant publications for curation, which is also known as document triage, is usually carried out by querying and reading articles in PubMed. However, this query-based method often obtains unsatisfactory precision and recall on the retrieved results, and it is difficult to manually generate optimal queries. To address this, we propose a machine-learning assisted triage method. We collect previously curated publications from two databases UniProtKB/Swiss-Prot and the NHGRI-EBI GWAS Catalog, and used them as a gold-standard dataset for training deep learning models based on convolutional neural networks. We then use the trained models to classify and rank new publications for curation. For evaluation, we apply our method to the real-world manual curation process of UniProtKB/Swiss-Prot and the GWAS Catalog. We demonstrate that our machine-assisted triage method outperforms the current query-based triage methods, improves efficiency, and enriches curated content. Our method achieves a precision 1.81 and 2.99 times higher than that obtained by the current query-based triage methods of UniProtKB/Swiss-Prot and the GWAS Catalog, respectively, without compromising recall. In fact, our method retrieves many additional relevant publications that the query-based method of UniProtKB/Swiss-Prot could not find. As these results show, our machine learning-based method can make the triage process more efficient and is being implemented in production so that human curators can focus on more challenging tasks to improve the quality of knowledge bases.


Assuntos
Curadoria de Dados/métodos , Armazenamento e Recuperação da Informação/métodos , Curadoria de Dados/estatística & dados numéricos , Bases de Dados Genéticas , Bases de Dados de Proteínas , Aprendizado Profundo , Genômica , Bases de Conhecimento , Aprendizado de Máquina , Publicações
19.
Bioinformatics ; 33(21): 3454-3460, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036270

RESUMO

MOTIVATION: Biological knowledgebases, such as UniProtKB/Swiss-Prot, constitute an essential component of daily scientific research by offering distilled, summarized and computable knowledge extracted from the literature by expert curators. While knowledgebases play an increasingly important role in the scientific community, their ability to keep up with the growth of biomedical literature is under scrutiny. Using UniProtKB/Swiss-Prot as a case study, we address this concern via multiple literature triage approaches. RESULTS: With the assistance of the PubTator text-mining tool, we tagged more than 10 000 articles to assess the ratio of papers relevant for curation. We first show that curators read and evaluate many more papers than they curate, and that measuring the number of curated publications is insufficient to provide a complete picture as demonstrated by the fact that 8000-10 000 papers are curated in UniProt each year while curators evaluate 50 000-70 000 papers per year. We show that 90% of the papers in PubMed are out of the scope of UniProt, that a maximum of 2-3% of the papers indexed in PubMed each year are relevant for UniProt curation, and that, despite appearances, expert curation in UniProt is scalable. AVAILABILITY AND IMPLEMENTATION: UniProt is freely available at http://www.uniprot.org/. CONTACT: sylvain.poux@sib.swiss. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Curadoria de Dados , Bases de Dados de Proteínas , Curadoria de Dados/estatística & dados numéricos , Mineração de Dados , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Bases de Conhecimento , PubMed/estatística & dados numéricos , Literatura de Revisão como Assunto , Estatística como Assunto
20.
Bioinformatics ; 32(12): 1907-10, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883486

RESUMO

UNLABELLED: The biomedical literature is a knowledge-rich resource and an important foundation for future research. With over 24 million articles in PubMed and an increasing growth rate, research in automated text processing is becoming increasingly important. We report here our recently developed web-based text mining services for biomedical concept recognition and normalization. Unlike most text-mining software tools, our web services integrate several state-of-the-art entity tagging systems (DNorm, GNormPlus, SR4GN, tmChem and tmVar) and offer a batch-processing mode able to process arbitrary text input (e.g. scholarly publications, patents and medical records) in multiple formats (e.g. BioC). We support multiple standards to make our service interoperable and allow simpler integration with other text-processing pipelines. To maximize scalability, we have preprocessed all PubMed articles, and use a computer cluster for processing large requests of arbitrary text. AVAILABILITY AND IMPLEMENTATION: Our text-mining web service is freely available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/#curl CONTACT: : Zhiyong.Lu@nih.gov.


Assuntos
Mineração de Dados , Internet , PubMed , Software , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa