RESUMO
CD4+ tissue resident memory T cells (TRMs) are implicated in the formation of persistent HIV reservoirs that are established during the very early stages of infection. The tissue-specific factors that direct T cells to establish tissue residency are not well defined, nor are the factors that establish viral latency. We report that costimulation via MAdCAM-1 and retinoic acid (RA), two constituents of gut tissues, together with TGF-ß, promote the differentiation of CD4+ T cells into a distinct subset α4ß7+CD69+CD103+ TRM-like cells. Among the costimulatory ligands we evaluated, MAdCAM-1 was unique in its capacity to upregulate both CCR5 and CCR9. MAdCAM-1 costimulation rendered cells susceptible to HIV infection. Differentiation of TRM-like cells was reduced by MAdCAM-1 antagonists developed to treat inflammatory bowel diseases. These finding provide a framework to better understand the contribution of CD4+ TRMs to persistent viral reservoirs and HIV pathogenesis.
Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Humanos , Fator de Crescimento Transformador beta , Tretinoína/farmacologia , Diferenciação Celular , Memória Imunológica , Receptores CCR5RESUMO
The CD4 receptor, by stabilizing TCR-MHC II interactions, plays a central role in adaptive immunity. It also serves as the HIV docking receptor. The HIV gp120 envelope protein binds directly to CD4. This interaction is a prerequisite for viral entry. gp120 also binds to âº4ß7, an integrin that is expressed on a subset of memory CD4+ T cells. HIV tropisms for CD4+ T cells and gut tissues are central features of HIV pathogenesis. We report that CD4 binds directly to âº4ß7 in a dynamic way, consistent with a cis regulatory interaction. The molecular details of this interaction are related to the way in which gp120 interacts with both receptors. Like MAdCAM-1 and VCAM-1, two recognized ligands of âº4ß7, the binding interface on CD4 includes 2 sites (1° and accessory), distributed across its two N-terminal IgSF domains (D1 and D2). The 1° site includes a sequence in the G ß-strand of CD4 D2, KIDIV, that binds directly to âº4ß7. This pentapeptide sequence occurs infrequently in eukaryotic proteins. However, a closely related and conserved sequence, KLDIV, appears in the V2 domain of gp120. KLDIV mediates gp120-âº4ß7 binding. The accessory âº4ß7 binding site on CD4 includes Phe43. The Phe43 aromatic ring protrudes outward from one edge of a loop connecting the C'C" strands of CD4 D1. Phe43 is a principal contact for HIV gp120. It interacts with conserved residues in the recessed CD4 binding pocket. Substitution of Phe43 abrogates CD4 binding to both gp120 and âº4ß7. As such, the interactions of gp120 with both CD4 and âº4ß7 reflect elements of their interactions with each other. These findings indicate that gp120 specificities for CD4 and âº4ß7 are interrelated and suggest that selective pressures which produced a CD4 tropic virus that replicates in gut tissues are linked to a dynamic interaction between these two receptors.
Assuntos
Infecções por HIV , Integrinas , Humanos , Integrinas/metabolismo , Sítios de Ligação , Antígenos CD4 , Linfócitos T CD4-Positivos/metabolismo , Proteína gp120 do Envelope de HIV/metabolismoRESUMO
The humoral immune response after acute infection with HIV-1 is delayed and ineffective. The HIV-1 envelope protein gp120 binds to and signals through integrin α4ß7 on T cells. We found that gp120 also bound to and signaled through α4ß7 on naive B cells, which resulted in an abortive proliferative response. In primary B cells, signaling by gp120 through α4ß7 resulted in increased expression of the immunosuppressive cytokine TGF-ß1 and FcRL4, an inhibitory receptor expressed on B cells. Coculture of B cells with HIV-1-infected autologous CD4(+) T cells also increased the expression of FcRL4 by B cells. Our findings indicated that in addition to mediating chronic activation of the immune system, viral proteins contributed directly to HIV-1-associated B cell dysfunction. Our studies identify a mechanism whereby the virus may subvert the early HIV-1-specific humoral immune response.
Assuntos
Linfócitos B/imunologia , Proliferação de Células , Proteína gp120 do Envelope de HIV/imunologia , Receptores Fc/imunologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células CHO , Células Cultivadas , Técnicas de Cocultura , Cricetinae , Cricetulus , Citometria de Fluxo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Integrinas/genética , Integrinas/imunologia , Integrinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica/imunologia , Receptores Fc/genética , Receptores Fc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
The HIV-1 envelope protein (Env) of early-replicating viruses encodes several distinct transmission signatures. One such signature involves a reduced number of potential N-linked glycosylation sites (PNGs). This transmission signature underscores the importance of posttranslational modifications in the fitness of early-replicating isolates. An additional signature in Env involves the overrepresentation of basic amino acid residues at a specific position in the Env signal peptide (SP). In this report, we investigated the potential impact of this SP signature on gp120 glycosylation and antigenicity. Two recombinant gp120s were constructed, one derived from an isolate that lacks this signature and a second from an early-replicating isolate that includes this signature. Chimeric gp120s were also constructed in which the two SPs were swapped between the isolates. All four gp120s were probed with glycan-, structure- and receptor- specific probes in a surface plasmon resonance binding assay. We found that the SP of Env influences qualitative aspects of Env glycosylation that in turn affect the antigenicity of Env in a major way. The SP impacts the affinity of Env for DC-SIGN, a lectin receptor expressed on dendritic cells that is believed to play a role in mucosal transmission. Additionally, affinity for the monoclonal antibodies 17b and A32, which recognize a CD4-induced, open conformation of Env is also altered. These results demonstrate that natural variation in the SP of HIV Env can significantly impact the antigenicity of mature gp120. Thus, the SP is likely subject to antibody-mediated immune pressure.
Assuntos
Proteína gp120 do Envelope de HIV , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão , Anticorpos Monoclonais/metabolismo , Células Dendríticas , Glicosilação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismoRESUMO
The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4ß7, a gut-homing receptor. Using both cell-surface expressed α4ß7 and a soluble α4ß7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4ß7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4ß7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4ß7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4ß7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4ß7. It includes the canonical LDV/I α4ß7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4ß7 interactions. These mAbs recognize conformations absent from the ß- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4ß7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.
Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Integrinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/metabolismo , Animais , Anticorpos Monoclonais , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Macaca , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/imunologia , Vacinas contra a SAIDS/química , Vacinas contra a SAIDS/imunologia , Vacinas contra a SAIDS/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodosRESUMO
Infection with human immunodeficiency virus 1 (HIV-1) results in the dissemination of virus to gut-associated lymphoid tissue. Subsequently, HIV-1 mediates massive depletion of gut CD4+ T cells, which contributes to HIV-1-induced immune dysfunction. The migration of lymphocytes to gut-associated lymphoid tissue is mediated by integrin alpha4beta7. We demonstrate here that the HIV-1 envelope protein gp120 bound to an activated form of alpha4beta7. This interaction was mediated by a tripeptide in the V2 loop of gp120, a peptide motif that mimics structures presented by the natural ligands of alpha4beta7. On CD4+ T cells, engagement of alpha4beta7 by gp120 resulted in rapid activation of LFA-1, the central integrin involved in the establishment of virological synapses, which facilitate efficient cell-to-cell spreading of HIV-1.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Integrinas/metabolismo , Mucosa Intestinal/imunologia , Linfócitos T CD4-Positivos/virologia , Movimento Celular/imunologia , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/virologia , Citometria de Fluxo , Humanos , Mucosa Intestinal/virologia , Células Matadoras Naturais/imunologia , Ligantes , Antígeno-1 Associado à Função Linfocitária/metabolismo , Ligação Proteica/imunologia , Transdução de Sinais/imunologiaRESUMO
The trimeric SARS-CoV-2 Spike protein mediates viral attachment facilitating cell entry. Most COVID-19 vaccines direct mammalian cells to express the Spike protein or deliver it directly via inoculation to engender a protective immune response. The trafficking and cellular tropism of the Spike protein in vivo and its impact on immune cells remains incompletely elucidated. In this study, we inoculated mice intranasally, intravenously, and subcutaneously with fluorescently labeled recombinant SARS-CoV-2 Spike protein. Using flow cytometry and imaging techniques, we analyzed its localization, immune cell tropism, and acute functional impact. Intranasal administration led to rapid lung alveolar macrophage uptake, pulmonary vascular leakage, and neutrophil recruitment and damage. When injected near the inguinal lymph node medullary, but not subcapsular macrophages, captured the protein, while scrotal injection recruited and fragmented neutrophils. Widespread endothelial and liver Kupffer cell uptake followed intravenous administration. Human peripheral blood cells B cells, neutrophils, monocytes, and myeloid dendritic cells all efficiently bound Spike protein. Exposure to the Spike protein enhanced neutrophil NETosis and augmented human macrophage TNF-α (tumor necrosis factor-α) and IL-6 production. Human and murine immune cells employed C-type lectin receptors and Siglecs to help capture the Spike protein. This study highlights the potential toxicity of the SARS-CoV-2 Spike protein for mammalian cells and illustrates the central role for alveolar macrophage in pathogenic protein uptake.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Macrófagos Alveolares , SARS-CoV-2/metabolismo , Vacinas contra COVID-19 , Infiltração de Neutrófilos , Fator de Necrose Tumoral alfa , Mamíferos/metabolismoRESUMO
The HIV envelope glycoprotein (Env) is a trimeric protein that facilitates viral binding and fusion with target cells. As the sole viral protein on the HIV surface, Env is important both for immune responses to HIV and in vaccine designs. Targeting Env in clinical applications is challenging due to its heavy glycosylation, high genetic variability, conformational camouflage, and its low abundance on virions. Thus, there is a critical need to better understand this protein. Flow virometry (FV) is a useful methodology for phenotyping the virion surface in a high-throughput, single virion manner. To demonstrate the utility of FV to characterize Env, we stained HIV virions with a panel of 85 monoclonal antibodies targeting different regions of Env. A broad range of antibodies yielded robust staining of Env, with V3 antibodies showing the highest quantitative staining. A subset of antibodies tested in parallel on viruses produced in CD4+ T cell lines, HEK293T cells, and primary cells showed that the cellular model of virus production can impact Env detection. Finally, in addition to being able to highlight Env heterogeneity on virions, we show FV can sensitively detect differences in Env conformation when soluble CD4 is added to virions before staining.
Assuntos
HIV-1 , Vírion , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , HIV-1/genética , HIV-1/fisiologia , HIV-1/imunologia , Vírion/metabolismo , Células HEK293 , Anticorpos Anti-HIV/imunologia , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologiaRESUMO
Resident memory T cells (TRMs) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor α4ß7 integrin, in the presence of retinoic acid and transforming growth factor-ß (TGF-ß) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8+ T cells to adopt a TRM-like phenotype. These cells express CD103 (integrin αE) and CD69, the two major TRM cell-surface markers, along with CD101. They also express C-C motif chemokine receptors 5 (CCR5) , C-C motif chemokine receptors 9 (CCR9), and α4ß7, three receptors associated with gut homing. A subset also expresses E-cadherin, a ligand for αEß7. Fluorescent lifetime imaging indicated an αEß7 and E-cadherin cis interaction on the plasma membrane. This report advances our understanding of the signals that drive the differentiation of CD8+ T cells into resident memory T cells and provides a means to expand these cells in vitro, thereby affording an avenue to generate more effective tissue-specific immunotherapies.
Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Linfócitos T CD8-Positivos , Cadeias alfa de Integrinas , Fator de Crescimento Transformador beta , Tretinoína , Tretinoína/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Cadeias alfa de Integrinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Memória Imunológica , Moléculas de Adesão Celular/metabolismo , Caderinas/metabolismo , Lectinas Tipo C/metabolismo , Diferenciação Celular , Mucoproteínas/metabolismo , Receptores CCR/metabolismo , Células T de Memória/imunologia , Células T de Memória/metabolismo , Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Integrinas/metabolismo , FenótipoRESUMO
The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Antígenos CD4 , Anticorpos Anti-HIV , HIV-1 , Humanos , Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Vacinas de DNA/imunologia , Anticorpos Monoclonais/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Infecções por HIV/virologia , Microscopia Crioeletrônica , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Sítios de Ligação , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/químicaRESUMO
Mucosal transmission of HIV is inefficient. The virus must breach physical barriers before it infects mucosal CD4+ T cells. Low-level viral replication occurs initially in mucosal CD4+ T cells, but within days high-level replication occurs in Peyer's patches, the gut lamina propria and mesenteric lymph nodes. Understanding the early events in HIV transmission may provide valuable information relevant to the development of an HIV vaccine. The viral quasispecies in a donor contracts through a genetic bottleneck in the recipient, such that, in low-risk settings, infection is frequently established by a single founder virus. Early-transmitting viruses in subtypes A and C mucosal transmission tend to encode gp120s with reduced numbers of N-linked glycosylation sites at specific positions throughout the V1-V4 domains, relative to typical chronically replicating isolates in the donor quasispecies. The transmission advantage gained by the absence of these N-linked glycosylation sites is unknown. Using primary α4ß7/CD4+ T cells and a flow-cytometry based steady-state binding assay we show that the removal of transmission-associated N-linked glycosylation sites results in large increases in the specific reactivity of gp120 for integrin-α4ß7. High-affinity for integrin α4ß7, although not found in many gp120s, was observed in early-transmitting gp120s that we analyzed. Increased α4ß7 affinity is mediated by sequences encoded in gp120 V1/V2. α4ß7-reactivity was also influenced by N-linked glycosylation sites located in C3/V4. These results suggest that the genetic bottleneck that occurs after transmission may frequently involve a relative requirement for the productive infection of α4ß7+/CD4+ T cells. Early-transmitting gp120s were further distinguished by their dependence on avidity-effects to interact with CD4, suggesting that these gp120s bear unusual structural features not present in many well-characterized gp120s derived from chronically replicating viruses. Understanding the structural features that characterize early-transmitting gp120s may aid in the design of an effective gp120-based subunit vaccine.
Assuntos
Linfócitos T CD4-Positivos/virologia , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/transmissão , HIV/genética , Integrinas/metabolismo , Mucosa Intestinal/virologia , Sequência de Aminoácidos , Anticorpos Neutralizantes , Células Cultivadas , Citometria de Fluxo , Genótipo , Glicosilação , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ressonância de Plasmônio de SuperfícieRESUMO
While numerous cellular proteins in the HIV envelope are known to alter virus infection, methodology to rapidly phenotype the virion surface in a high throughput, single virion manner is lacking. Thus, many human proteins may exist on the virion surface that remain undescribed. Herein, we developed a novel flow virometry screening assay to discover new proteins on the surface of HIV particles. By screening a CD4+ T cell line and its progeny virions, along with four HIV isolates produced in primary cells, we discovered 59 new candidate proteins in the HIV envelope that were consistently detected across diverse HIV isolates. Among these discoveries, CD38, CD97, and CD278 were consistently present at high levels on virions when using orthogonal techniques to corroborate flow virometry results. This study yields new discoveries about virus biology and demonstrates the utility and feasibility of a novel flow virometry assay to phenotype individual virions.
Assuntos
Infecções por HIV , Vírus , Humanos , Vírion/genética , Linhagem Celular , Infecções por HIV/metabolismoRESUMO
The trimeric SARS-CoV-2 Spike protein mediates viral attachment facilitating cell entry. Most COVID-19 vaccines direct mammalian cells to express the Spike protein or deliver it directly via inoculation to engender a protective immune response. The trafficking and cellular tropism of the Spike protein in vivo and its impact on immune cells remains incompletely elucidated. In this study we inoculated mice intranasally, intravenously, and subcutaneously with fluorescently labeled recombinant SARS-CoV-2 Spike protein. Using flow cytometry and imaging techniques we analyzed its localization, immune cell tropism, and acute functional impact. Intranasal administration led to rapid lung alveolar macrophage uptake, pulmonary vascular leakage, and neutrophil recruitment and damage. When injected near the inguinal lymph node medullary, but not subcapsular macrophages, captured the protein, while scrotal injection recruited and fragmented neutrophils. Wide-spread endothelial and liver Kupffer cell uptake followed intravenous administration. Human peripheral blood cells B cells, neutrophils, monocytes, and myeloid dendritic cells all efficiently bound Spike protein. Exposure to the Spike protein enhanced neutrophil NETosis and augmented human macrophage TNF-α and IL-6 production. Human and murine immune cells employed C-type lectin receptors and Siglecs to help capture the Spike protein. This study highlights the potential toxicity of the SARS-CoV-2 Spike protein for mammalian cells and illustrates the central role for alveolar macrophage in pathogenic protein uptake.
RESUMO
The vaccine elicitation of HIV-neutralizing antibodies with tier-2-neutralization breadth has been a challenge. Here, we report the isolation and characteristics of a CD4-binding site specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent gp120 DNA prime-protein boost vaccine. HmAb64 derived from heavy chain variable germline gene IGHV1-18, light chain germline gene IGKV1-39, and had a 3rd heavy chain complementarity determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 21 (10%), including tier-2 neutralization resistant strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 bound to a conformation between prefusion closed and occluded open forms of envelope trimer, using both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4-binding site. A gp120 subunit-based vaccine can thus elicit an antibody capable of tier 2-HIV neutralization.
RESUMO
Both activated and resting CD4(+) T cells in mucosal tissues play important roles in the earliest phases of infection after sexual transmission of HIV-1, a process that is inefficient. HIV-1 gp120 binds to integrin alpha(4)beta(7) (alpha(4)beta(7)), the gut mucosal homing receptor. We find that alpha(4)beta(7)(high) CD4(+) T cells are more susceptible to productive infection than are alpha(4)beta(7)(low-neg) CD4(+) T cells in part because this cellular subset is enriched with metabolically active CD4(+) T cells. alpha(4)beta(7)(high) CD4(+) T cells are CCR5(high) and CXCR4(low); on these cells, alpha(4)beta(7) appears in a complex with CD4. The specific affinity of gp120 for alpha(4)beta(7) provides a mechanism for HIV-1 to target activated cells that are critical for efficient virus propagation and dissemination following sexual transmission.
Assuntos
Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Integrinas/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/virologia , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/imunologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Imunoprecipitação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Receptores CCR5/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Replicação Viral/efeitos dos fármacosRESUMO
Human gut-associated lymphoid tissues (GALT) play a key role in the acute phase of HIV infection. The propensity of HIV to replicate in these tissues, however, is not fully understood. Access and migration of naive and memory CD4+ T cells to these sites is mediated by interactions between integrin α4ß7, expressed on CD4+ T cells, and MAdCAM, expressed on high endothelial venules. We report here that MAdCAM delivers a potent costimulatory signal to naive and memory CD4+ T cells following ligation with α4ß7. Such costimulation promotes high levels of HIV replication. An anti-α4ß7 mAb that prevents mucosal transmission of SIV blocks MAdCAM signaling through α4ß7 and MAdCAM-dependent viral replication. MAdCAM costimulation of memory CD4+ T cells is sufficient to drive cellular proliferation and the upregulation of CCR5, while naive CD4+ T cells require both MAdCAM and retinoic acid to achieve the same response. The pairing of MAdCAM and retinoic acid is unique to the GALT, leading us to propose that HIV replication in these sites is facilitated by MAdCAM-α4ß7 interactions. Moreover, complete inhibition of MAdCAM signaling by an anti-α4ß7 mAb, an analog of the clinically approved therapeutic vedolizumab, highlights the potential of such agents to control acute HIV infection.