RESUMO
The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.
Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Obesidade/genética , Animais , Metabolismo dos Carboidratos , Dieta , Embrião não Mamífero/metabolismo , Cor de Olho , Feminino , Predisposição Genética para Doença , Heterocromatina/metabolismo , Humanos , Masculino , Camundongos , Obesidade/metabolismo , Espermatozoides/metabolismoRESUMO
OBJECTIVE: The genome-wide profiling of 5-hydroxymethylcytosines (5hmC) on circulating cell-free DNA (cfDNA) has revealed promising biomarkers for various diseases. The purpose of this study was to investigate 5hmC signals in serum cfDNA and identify novel predictive biomarkers for the development of chemoresistance in high-grade serous ovarian cancer (HGSOC). We hypothesized that 5hmC profiles in cfDNA reflect the development of chemoresistance and elucidate pathways that may drive chemoresistance in HGSOC. Moreover, we sought to identify predictors that would better stratify outcomes for women with intermediate-sensitive HGSOC. METHODS: Women diagnosed with HGSOC and known platinum sensitivity status were selected for this study. Nano-hmC-Seal was performed on cfDNA isolated from archived serum samples, and differential 5hmC features were identified using DESeq2 to establish a model predictive of chemoresistance. RESULTS: A multivariate model consisting of three features (preoperative CA-125, largest residual implant after surgery, 5hmC level of OSGEPL), stratified samples from intermediate sensitive, chemo-naive women diagnosed with HGSOC into chemotherapy-resistant- and sensitive-like strata with a significant difference in overall survival (OS). Independent analysis of The Cancer Genome Atlas data further confirmed that high OSGEPL1 expression is a favorable prognostic factor for HGSOC. CONCLUSIONS: We have developed a novel multivariate model based on clinico-pathologic data and a cfDNA-derived 5hmC modified gene, OSGEPL1, that predicted response to platinum-based chemotherapy in intermediate-sensitive HGSOC. Our multivariate model applies to chemo-naïve samples regardless if the patint was treated with adjuvant or neoadjuvant chemotherapy. These results merit further investigation of the predictive capability of our model in larger cohorts.
Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , BiomarcadoresRESUMO
Methylation-based liquid biopsies show promises in detecting cancer using circulating cell-free DNA; however, current limitations impede clinical application. Most assays necessitate substantial DNA inputs, posing challenges. Additionally, underrepresented tumor DNA fragments may go undetected during exponential amplification steps of traditional sequencing methods. Here, we report linear amplification-based bisulfite sequencing (LABS), enabling linear amplification of bisulfite-treated DNA fragments in a genome-wide, unbiased fashion, detecting cancer abnormalities with sub-nanogram inputs. Applying LABS to 100 patient samples revealed cancer-specific patterns, copy number alterations, and enhanced cancer detection accuracy by identifying tissue-of-origin and immune cell composition.
Assuntos
Metilação de DNA , Neoplasias , Análise de Sequência de DNA , Sulfitos , Humanos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Ácidos Nucleicos Livres , Técnicas de Amplificação de Ácido Nucleico/métodos , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , DNA Tumoral Circulante/genéticaRESUMO
Importance: Ultrasonography-based risk models can help nonexpert clinicians evaluate adnexal lesions and reduce surgical interventions for benign tumors. Yet, these models have limited uptake in the US, and studies comparing their diagnostic accuracy are lacking. Objective: To evaluate, in a US cohort, the diagnostic performance of 3 ultrasonography-based risk models for differentiating between benign and malignant adnexal lesions: International Ovarian Tumor Analysis (IOTA) Simple Rules with inconclusive cases reclassified as malignant or reevaluated by an expert, IOTA Assessment of Different Neoplasias in the Adnexa (ADNEX), and Ovarian-Adnexal Reporting and Data System (O-RADS). Design, Setting, and Participants: This retrospective diagnostic study was conducted at a single US academic medical center and included consecutive patients aged 18 to 89 years with adnexal masses that were managed surgically or conservatively between January 2017 and October 2022. Exposure: Evaluation of adnexal lesions using the Simple Rules, ADNEX, and O-RADS. Main Outcomes and Measures: The main outcome was diagnostic performance, including area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Surgery or follow-up were reference standards. Secondary analyses evaluated the models' performances stratified by menopause status and race. Results: The cohort included 511 female patients with a 15.9% malignant tumor prevalence (81 patients). Mean (SD) ages of patients with benign and malignant adnexal lesions were 44.1 (14.4) and 52.5 (15.2) years, respectively, and 200 (39.1%) were postmenopausal. In the ROC analysis, the AUCs for discriminative performance of the ADNEX and O-RADS models were 0.96 (95% CI, 0.93-0.98) and 0.92 (95% CI, 0.90-0.95), respectively. After converting the ADNEX continuous individualized risk into the discrete ordinal categories of O-RADS, the ADNEX performance was reduced to an AUC of 0.93 (95% CI, 0.90-0.96), which was similar to that for O-RADS. The Simple Rules combined with expert reevaluation had 93.8% sensitivity (95% CI, 86.2%-98.0%) and 91.9% specificity (95% CI, 88.9%-94.3%), and the Simple Rules combined with malignant classification had 93.8% sensitivity (95% CI, 86.2%-98.0%) and 88.1% specificity (95% CI, 84.7%-91.0%). At a 10% risk threshold, ADNEX had 91.4% sensitivity (95% CI, 83.0%-96.5%) and 86.3% specificity (95% CI, 82.7%-89.4%) and O-RADS had 98.8% sensitivity (95% CI, 93.3%-100%) and 74.4% specificity (95% CI, 70.0%-78.5%). The specificities of all models were significantly lower in the postmenopausal group. Subgroup analysis revealed high performances independent of race. Conclusions and Relevance: In this diagnostic study of a US cohort, the Simple Rules, ADNEX, and O-RADS models performed well in differentiating between benign and malignant adnexal lesions; this outcome has been previously reported primarily in European populations. Risk stratification models can lead to more accurate and consistent evaluations of adnexal masses, especially when used by nonexpert clinicians, and may reduce unnecessary surgeries.
Assuntos
Doenças dos Anexos , Neoplasias Ovarianas , Humanos , Feminino , Estudos Retrospectivos , Sensibilidade e Especificidade , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Doenças dos Anexos/diagnóstico por imagem , Doenças dos Anexos/patologia , UltrassonografiaRESUMO
Extracellular vesicles (EVs) are ideal for liquid biopsy, but distinguishing cancer cell-derived EVs and subpopulations of biomarker-containing EVs in body fluids has been challenging. Here, we identified that the glycoproteins CD147 and CD98 define subpopulations of EVs that are distinct from classical tetraspanin+ EVs in their biogenesis. Notably, we identified that CD147+ EVs have substantially higher microRNA (miRNA) content than tetraspanin+ EVs and are selectively enriched in miRNA through the interaction of CD147 with heterogeneous nuclear ribonucleoprotein A2/B1. Studies using mouse xenograft models showed that CD147+ EVs predominantly derive from cancer cells, whereas the majority of tetraspanin+ EVs are not of cancer cell origin. Circulating CD147+ EVs, but not tetraspanin+ EVs, were significantly increased in prevalence in patients with ovarian and renal cancers as compared to healthy individuals and patients with benign conditions. Furthermore, we found that isolating miRNAs from body fluids by CD147 immunocapture increases the sensitivity of detecting cancer cell-specific miRNAs, and that circulating miRNAs isolated by CD147 immunocapture more closely reflect the tumor miRNA signature than circulating miRNAs isolated by conventional methods. Collectively, our findings reveal that CD147 defines miRNA-enriched, cancer cell-derived EVs, and that CD147 immunocapture could be an effective approach to isolate cancer-derived miRNAs for liquid biopsy.
Assuntos
MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Neoplasias , Animais , Camundongos , Humanos , MicroRNAs/genética , Vesículas Extracelulares/genética , Biomarcadores , Biópsia LíquidaRESUMO
As part of the Human Cell Atlas Initiative, our goal is to generate single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq], 86,708 cells) and regulatory (single-cell assay on transposase accessible chromatin sequencing [scATAC-seq], 59,830 cells) profiles of the normal postmenopausal ovary and fallopian tube (FT). The FT contains 11 major cell types, and the ovary contains 6. The dominating cell type in the FT and ovary is the stromal cell, which expresses aging-associated genes. FT epithelial cells express multiple ovarian cancer risk-associated genes (CCDC170, RND3, TACC2, STK33, and ADGB) and show active communication between fimbrial epithelial cells and ovarian stromal cells. Integrated single-cell transcriptomics and chromatin accessibility data show that the regulatory landscape of the fimbriae is different from other anatomic regions. Cell types with similar gene expression in the FT display transcriptional profiles. These findings allow us to disentangle the cellular makeup of the postmenopausal FT and ovary, advancing our knowledge of gynecologic diseases in menopause.
Assuntos
Tubas Uterinas , Ovário , Humanos , Feminino , Tubas Uterinas/metabolismo , RNA/metabolismo , Pós-Menopausa/genética , Cromatina/metabolismo , Análise de Célula Única , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
The growing use of neoadjuvant chemotherapy to treat advanced stage high-grade serous ovarian cancer (HGSOC) creates an opportunity to better understand chemotherapy-induced mutational and gene expression changes. Here we performed a cohort study including 34 patients with advanced stage IIIC or IV HGSOC to assess changes in the tumor genome and transcriptome in women receiving neoadjuvant chemotherapy. RNA sequencing and panel DNA sequencing of 596 cancer-related genes was performed on paired formalin-fixed paraffin-embedded specimens collected before and after chemotherapy, and differentially expressed genes (DEG) and copy-number variations (CNV) in pre- and post-chemotherapy samples were identified. Following tissue and sequencing quality control, the final patient cohort consisted of 32 paired DNA and 20 paired RNA samples. Genomic analysis of paired samples did not reveal any recurrent chemotherapy-induced mutations. Gene expression analyses found that most DEGs were upregulated by chemotherapy, primarily in the chemotherapy-resistant specimens. AP-1 transcription factor family genes (FOS, FOSB, FRA-1) were particularly upregulated in chemotherapy-resistant samples. CNV analysis identified recurrent 11q23.1 amplification, which encompasses SIK2. In vitro, combined treatment with AP-1 or SIK2 inhibitors with carboplatin or paclitaxel demonstrated synergistic effects. These data suggest that AP-1 activity and SIK2 copy-number amplification are induced by chemotherapy and may represent mechanisms by which chemotherapy resistance evolves in HGSOC. AP-1 and SIK2 are druggable targets with available small molecule inhibitors and represent potential targets to circumvent chemotherapy resistance. SIGNIFICANCE: Genomic and transcriptomic analyses identify increased AP-1 activity and SIK2 copy-number amplifications in resistant ovarian cancer following neoadjuvant chemotherapy, uncovering synergistic effects of AP-1 and SIK2 inhibitors with chemotherapy.
Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Terapia Neoadjuvante/métodos , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologiaRESUMO
The role of phospholipid signaling in ovarian cancer is poorly understood. Sphingosine-1-phosphate (S1P) is a bioactive metabolite of sphingosine that has been associated with tumor progression through enhanced cell proliferation and motility. Similarly, sphingosine kinases (SPHK), which catalyze the formation of S1P and thus regulate the sphingolipid rheostat, have been reported to promote tumor growth in a variety of cancers. The findings reported here show that exogenous S1P or overexpression of SPHK1 increased proliferation, migration, invasion, and stem-like phenotypes in ovarian cancer cell lines. Likewise, overexpression of SPHK1 markedly enhanced tumor growth in a xenograft model of ovarian cancer, which was associated with elevation of key markers of proliferation and stemness. The diabetes drug, metformin, has been shown to have anticancer effects. Here, we found that ovarian cancer patients taking metformin had significantly reduced serum S1P levels, a finding that was recapitulated when ovarian cancer cells were treated with metformin and analyzed by lipidomics. These findings suggested that in cancer the sphingolipid rheostat may be a novel metabolic target of metformin. In support of this, metformin blocked hypoxia-induced SPHK1, which was associated with inhibited nuclear translocation and transcriptional activity of hypoxia-inducible factors (HIF1α and HIF2α). Further, ovarian cancer cells with high SPHK1 were found to be highly sensitive to the cytotoxic effects of metformin, whereas ovarian cancer cells with low SPHK1 were resistant. Together, the findings reported here show that hypoxia-induced SPHK1 expression and downstream S1P signaling promote ovarian cancer progression and that tumors with high expression of SPHK1 or S1P levels might have increased sensitivity to the cytotoxic effects of metformin. IMPLICATIONS: Metformin targets sphingolipid metabolism through inhibiting SPHK1, thereby impeding ovarian cancer cell migration, proliferation, and self-renewal.
Assuntos
Metformina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Hipoglicemiantes/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Oncolytic adenoviral mutants infect human malignant cells and replicate selectively within them. This induces direct cytotoxicity that can also trigger profound innate and adaptive immune responses. However, the mechanism by which adenoviruses produce cell death remains uncertain. We previously suggested that type 5 adenoviruses, including the E1A CR2 deletion mutant dl922-947, might induce a novel form of programmed death resembling necroptosis. Here we have investigated the roles of core necrosis proteins RIPK1, RIPK3 and MLKL in the cytotoxicity of dl922-947 and other adenovirus serotypes. By electron microscopy, we show that dl922-947 induces similar necrotic morphology as TSZ treatment (TNF-α, Smac mimetic, zVAD.fmk). However, dl922-947-mediated death is independent of TNF-α signalling, does not require RIPK1 and does not rely upon the presence of MLKL. However, inhibition of caspases, specifically caspase-8, induces necroptosis that is RIPK3 dependent and significantly enhances dl922-947 cytotoxicity. Moreover, using CRISPR/Cas9 gene editing, we demonstrate that the increase in cytotoxicity seen upon caspase inhibition is also MLKL dependent. Even in the absence of caspase inhibition, RIPK3 expression promotes dl922-947 and wild-type adenovirus type 5 efficacy both in vitro and in vivo. Together, these results suggest that adenovirus induces a form of programmed necrosis that differs from classical TSZ necroptosis.