Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 171(4): 2317-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27252306

RESUMO

In eukaryotes, subcellular compartments such as mitochondria, the endoplasmic reticulum, lysosomes, and vacuoles have the capacity for Ca(2+) transport across their membranes to modulate the activity of compartmentalized enzymes or to convey specific cellular signaling events. In plants, it has been suggested that chloroplasts also display Ca(2+) regulation. So far, monitoring of stromal Ca(2+) dynamics in vivo has exclusively relied on using the luminescent Ca(2+) probe aequorin. However, this technique is limited in resolution and can only provide a readout averaged over chloroplast populations from different cells and tissues. Here, we present a toolkit of Arabidopsis (Arabidopsis thaliana) Ca(2+) sensor lines expressing plastid-targeted FRET-based Yellow Cameleon (YC) sensors. We demonstrate that the probes reliably report in vivo Ca(2+) dynamics in the stroma of root plastids in response to extracellular ATP and of leaf mesophyll and guard cell chloroplasts during light-to-low-intensity blue light illumination transition. Applying YC sensing of stromal Ca(2+) dynamics to single chloroplasts, we confirm findings of gradual, sustained stromal Ca(2+) increases at the tissue level after light-to-low-intensity blue light illumination transitions, but monitor transient Ca(2+) spiking as a distinct and previously unknown component of stromal Ca(2+) signatures. Spiking was dependent on the availability of cytosolic Ca(2+) but not synchronized between the chloroplasts of a cell. In contrast, the gradual sustained Ca(2+) increase occurred independent of cytosolic Ca(2+), suggesting intraorganellar Ca(2+) release. We demonstrate the capacity of the YC sensor toolkit to identify novel, fundamental facets of chloroplast Ca(2+) dynamics and to refine the understanding of plastidial Ca(2+) regulation.


Assuntos
Equorina/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio , Cálcio/metabolismo , Equorina/genética , Arabidopsis/citologia , Arabidopsis/genética , Transporte Biológico , Cloroplastos/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão , Vacúolos/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(43): 17717-22, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045639

RESUMO

Cyclic photosynthetic electron flow (CEF) is crucial to photosynthesis because it participates in the control of chloroplast energy and redox metabolism, and it is particularly induced under adverse environmental conditions. Here we report that down-regulation of the chloroplast localized Ca(2+) sensor (CAS) protein by an RNAi approach in Chlamydomonas reinhardtii results in strong inhibition of CEF under anoxia. Importantly, this inhibition is rescued by an increase in the extracellular Ca(2+) concentration, inferring that CEF is Ca(2+)-dependent. Furthermore, we identified a protein, anaerobic response 1 (ANR1), that is also required for effective acclimation to anaerobiosis. Depletion of ANR1 by artificial microRNA expression mimics the CAS-depletion phenotype, and under anaerobic conditions the two proteins coexist within a large active photosystem I-cytochrome b(6)/f complex. Moreover, we provide evidence that CAS and ANR1 interact with each other as well as with PGR5-Like 1 (PGRL1) in vivo. Overall our data establish a Ca(2+)-dependent regulation of CEF via the combined function of ANR1, CAS, and PGRL1, associated with each other in a multiprotein complex.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Fotossíntese , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Espectrometria de Fluorescência
3.
Plant Cell ; 23(8): 2950-63, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21856795

RESUMO

The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Cálcio/farmacologia , Chlamydomonas reinhardtii/fisiologia , Cloroplastos/metabolismo , Luz , Proteínas de Plantas/metabolismo , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cloroplastos/efeitos da radiação , Regulação para Baixo/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intercelular , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Peptídeos/farmacologia , Fenótipo , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Proteínas de Plantas/genética , Proteômica , Deleção de Sequência , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Sulfonamidas/farmacologia , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Venenos de Vespas/farmacologia
4.
New Phytol ; 184(3): 517-528, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19860013

RESUMO

Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Cellular calcium signals are detected and transmitted by calcium-binding proteins functioning as sensor molecules. The family of calcineurin B-like (CBL) proteins represents a unique group of calcium sensors and contributes to the decoding of calcium transients by interacting with and regulating the family of CBL-interacting protein kinases (CIPKs). In higher plants, CBL proteins and CIPKs form a complex signaling network that allows for flexible but specific signal-response coupling during environmental adaptation reactions. This review presents novel findings concerning the evolution of this signaling network and key insights into the physiological function of CBL-CIPK complexes. These aspects will be presented and discussed in the context of emerging functional principles governing efficient and specific information processing in this signaling system.


Assuntos
Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Calcineurina/química , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Genômica , Modelos Biológicos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
5.
New Phytol ; 179(3): 675-686, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18507772

RESUMO

* Guard cell movements are regulated by environmental cues including, for example, elevations in extracellular Ca(2+) concentration. Here, the subcellular localization and physiological function of the Ca(2+)-sensing receptor (CAS) protein was investigated. * CAS protein localization was ascertained by microscopic analyses of green fluorescent protein (GFP) fusion proteins and biochemical fractionation assays. Comparative guard cell movement investigations were performed in wild-type and cas loss-of-function mutant lines of Arabidopsis thaliana. Cytoplasmic Ca(2+) dynamics were addressed in plants expressing the yellow cameleon reporter protein YC3.6. * This study identified CAS as a chloroplast-localized protein that is crucial for proper stomatal regulation in response to elevations of external Ca(2+). CAS fulfils this role through modulation of the cytoplasmic Ca(2+) concentration. * This work reveals a novel role of the chloroplast in cellular Ca(2+) signal transduction.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Estômatos de Plantas/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Tilacoides/fisiologia , Sequência de Aminoácidos , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/genética , Fracionamento Celular , Sequência Conservada , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/análise , Estômatos de Plantas/fisiologia , Receptores de Detecção de Cálcio/análise , Receptores de Detecção de Cálcio/genética , Proteínas Recombinantes de Fusão/análise , Análise de Sequência de Proteína , Transdução de Sinais/genética , Tilacoides/química , Tilacoides/ultraestrutura , Nicotiana/genética , Nicotiana/ultraestrutura
6.
Nat Biotechnol ; 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272678

RESUMO

Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.

7.
Genome Biol Evol ; 9(1): 64-76, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28172771

RESUMO

Geraniaceae are known for their unusual plastid genomes (plastomes), with the genus Pelargonium being most conspicuous with regard to plastome size and gene organization as judged by the sequenced plastomes of P. x hortorum and P. alternans. However, the hybrid origin of P. x hortorum and the uncertain phylogenetic position of P. alternans obscure the events that led to these extraordinary plastomes. Here, we examine all plastid reconfiguration hotspots for 60 Pelargonium species across all subgenera using a PCR and sequencing approach. Our reconstruction of the rearrangement history revealed four distinct plastome types. The ancestral plastome configuration in the two subgenera Magnipetala and Pelargonium is consistent with that of the P. alternans plastome, whereas that of the subgenus Parvulipetala deviates from this organization by one synapomorphic inversion in the trnNGUU­ndhF region. The plastome of P. x hortorum resembles those of one group of the subgenus Paucisignata, but differs from a second group by another inversion in the psaI­psaJ region. The number of microstructural changes and amount of repetitive DNA are generally elevated in all inverted regions. Nucleotide substitution rates correlate positively with the number of indels in all regions across the different subgenera. We also observed lineage- and species-specific changes in the gene content, including gene duplications and fragmentations. For example, the plastid rbcL­psaI region of Pelargonium contains a highly variable accD-like region. Our results suggest alternative evolutionary paths under possibly changing modes of plastid transmission and indicate the non-functionalization of the plastid accD gene in Pelargonium.


Assuntos
Genomas de Plastídeos , Pelargonium/classificação , Pelargonium/genética , Evolução Molecular , Genoma de Cloroplastos , Pelargonium/citologia , Filogenia
8.
Plant J ; 50(2): 347-63, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17376166

RESUMO

The tolerance responses of plants to many abiotic stresses are conjectured to be controlled by complex gene networks. In the frame of the AtGenExpress project a comprehensive Arabidopsis thaliana genome transcript expression study was performed using the Affymetrix ATH1 microarray in order to understand these regulatory networks in detail. In contrast to earlier studies, we subjected, side-by-side and in a high-resolution kinetic series, Arabidopsis plants, of identical genotype grown under identical conditions, to different environmental stresses comprising heat, cold, drought, salt, high osmolarity, UV-B light and wounding. Furthermore, the harvesting of tissue and RNA isolation were performed in parallel at the same location using identical experimental protocols. Here we describe the technical performance of the experiments. We also present a general overview of environmental abiotic stress-induced gene expression patterns and the results of a model bioinformatics analysis of gene expression in response to UV-B light, drought and cold stress. Our results suggest that the initial transcriptional stress reaction of Arabidopsis might comprise a set of core environmental stress response genes which, by adjustment of the energy balance, could have a crucial function in various stress responses. In addition, there are indications that systemic signals generated by the tissue exposed to stress play a major role in the coordination and execution of stress responses. In summary, the information reported provides a prime reference point and source for the subsequent exploitation of this important resource for research into plant abiotic stress.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Temperatura Baixa , Biologia Computacional , Desastres , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genoma de Planta/genética , Temperatura Alta , Modelos Genéticos , Pressão Osmótica , Análise de Componente Principal , Reprodutibilidade dos Testes , Sais/farmacologia , Raios Ultravioleta
9.
Plant J ; 48(6): 857-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17092313

RESUMO

Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Expressão Gênica , Pressão Osmótica , Proteínas Serina-Treonina Quinases/genética
10.
Plant Physiol ; 134(1): 43-58, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14730064

RESUMO

Calcium signals mediate a multitude of plant responses to external stimuli and regulate a wide range of physiological processes. Calcium-binding proteins, like calcineurin B-like (CBL) proteins, represent important relays in plant calcium signaling. These proteins form a complex network with their target kinases being the CBL-interacting protein kinases (CIPKs). Here, we present a comparative genomics analysis of the full complement of CBLs and CIPKs in Arabidopsis and rice (Oryza sativa). We confirm the expression and transcript composition of the 10 CBLs and 25 CIPKs encoded in the Arabidopsis genome. Our identification of 10 CBLs and 30 CIPKs from rice indicates a similar complexity of this signaling network in both species. An analysis of the genomic evolution suggests that the extant number of gene family members largely results from segmental duplications. A phylogenetic comparison of protein sequences and intron positions indicates an early diversification of separate branches within both gene families. These branches may represent proteins with different functions. Protein interaction analyses and expression studies of closely related family members suggest that even recently duplicated representatives may fulfill different functions. This work provides a basis for a defined further functional dissection of this important plant-specific signaling system.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Sinalização do Cálcio , Oryza/genética , Oryza/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Evolução Molecular , Éxons , Genes de Plantas , Genômica , Íntrons , Dados de Sequência Molecular , Família Multigênica , Filogenia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade da Espécie
11.
Plant Cell ; 16(7): 1912-24, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15208400

RESUMO

Calcium plays a pivotal role in plant responses to several stimuli, including pathogens, abiotic stresses, and hormones. However, the molecular mechanisms underlying calcium functions are poorly understood. It is hypothesized that calcium serves as second messenger and, in many cases, requires intracellular protein sensors to transduce the signal further downstream in the pathways. The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plant cells. Here, we report our analysis of the CBL9 member of this gene family. Expression of CBL9 was inducible by multiple stress signals and abscisic acid (ABA) in young seedlings. When CBL9 gene function was disrupted in Arabidopsis thaliana plants, the responses to ABA were drastically altered. The mutant plants became hypersensitive to ABA in the early developmental stages, including seed germination and post-germination seedling growth. In addition, seed germination in the mutant also showed increased sensitivity to inhibition by osmotic stress conditions produced by high concentrations of salt and mannitol. Further analyses indicated that increased stress sensitivity in the mutant may be a result of both ABA hypersensitivity and increased accumulation of ABA under the stress conditions. The cbl9 mutant plants showed enhanced expression of genes involved in ABA signaling, such as ABA-INSENSITIVE 4 and 5. This study has identified a calcium sensor as a common element in the ABA signaling and stress-induced ABA biosynthesis pathways.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Meios de Cultura , Germinação , Glucose/metabolismo , Manitol/metabolismo , Dados de Sequência Molecular , Mutação , Pressão Osmótica , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Cloreto de Sódio/metabolismo
12.
Plant J ; 36(4): 457-70, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14617077

RESUMO

Calcium ions represent both an integrative signal and an important convergence point of many disparate signaling pathways. Calcium-binding proteins, like calcineurin B-like (CBL) proteins, have been implicated as important relays in calcium signaling. Here, we report the in vivo study of CBL1 function in Arabidopsis. Analyses of loss-of-function as well as CBL1-overexpressing lines indicate a crucial function of this calcium sensor protein in abiotic stress responses. Mutation of CBL1 impairs plant responses to drought and salt stresses and affects gene expression of cold-regulated genes, but does not affect abscisic acid (ABA) responsiveness. Conversely, overexpression of CBL1 reduces transpirational water loss and induces the expression of early stress-responsive transcription factors and stress adaptation genes in non-stressed plants. Together, our data indicate that the calcium sensor protein CBL1 may constitute an integrative node in plant responses to abiotic stimuli and contributes to the regulation of early stress-related transcription factors of the C-Repeat-Binding Factor/dehydration-responsive element (CBF/DREB) type.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sinalização do Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Temperatura Baixa , DNA Bacteriano/química , DNA Bacteriano/genética , Desastres , Regulação da Expressão Gênica de Plantas , Mutação , Transpiração Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Cloreto de Sódio/farmacologia , Estresse Mecânico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa