Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914761

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infant intestinal tract, exacerbated by significant diagnostic difficulties. In NEC, the intestine exhibits hypoperfusion and dysmotility, contributing to disease pathogenesis. However, these features cannot be accurately and quantitively assessed with current imaging modalities. We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. METHODS: In this first-in-disease application, we evaluated NEC using PAI to assess intestinal health biomarkers in an experimental model of NEC. NEC was induced in neonatal rats from birth to 4-days. Healthy breastfed (BF) and NEC rat pups were imaged at 2- and 4-days. RESULTS: Intestinal tissue oxygen saturation was measured with PAI, and NEC pups showed significant decreases at 2- and 4-days. Ultrasound and PAI cine recordings were used to capture intestinal peristalsis and contrast agent transit within the intestine. Intestinal motility, assessed using computational intestinal deformation analysis, demonstrated significant reductions in both early and established NEC. NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. CONCLUSION: This preclinical study presents PAI as an emerging diagnostic imaging modality for intestinal disease assessment in premature infants. IMPACT: Necrotizing enterocolitis (NEC) is a devastating intestinal disease affecting premature infants with significant mortality. NEC presents significant clinical diagnostic difficulties, with limited diagnostic confidence complicating timely and effective interventional efforts. This study is an important foundational first-in-disease preclinical study that establishes the utility for PAI to detect changes in intestinal tissue oxygenation and intestinal motility with NEC disease induction and progression. This study demonstrates the feasibility and exceptional promise for the use of PAI to non-invasively assess oxygenation and motility in the healthy and diseased infant intestine.

2.
Gut ; 71(6): 1068-1077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34497145

RESUMO

OBJECTIVE: Metaplasia arises from differentiated cell types in response to injury and is considered a precursor in many cancers. Heterogeneous cell lineages are present in the reparative metaplastic mucosa with response to injury, including foveolar cells, proliferating cells and spasmolytic polypeptide-expressing metaplasia (SPEM) cells, a key metaplastic cell population. Zymogen-secreting chief cells are long-lived cells in the stomach mucosa and have been considered the origin of SPEM cells; however, a conflicting paradigm has proposed isthmal progenitor cells as an origin for SPEM. DESIGN: Gastric intrinsic factor (GIF) is a stomach tissue-specific gene and exhibits protein expression unique to mature mouse chief cells. We generated a novel chief cell-specific driver mouse allele, GIF-rtTA. GIF-GFP reporter mice were used to validate specificity of GIF-rtTA driver in chief cells. GIF-Cre-RnTnG mice were used to perform lineage tracing during homoeostasis and acute metaplasia development. L635 treatment was used to induce acute mucosal injury and coimmunofluorescence staining was performed for various gastric lineage markers. RESULTS: We demonstrated that mature chief cells, rather than isthmal progenitor cells, serve as the predominant origin of SPEM cells during the metaplastic process after acute mucosal injury. Furthermore, we observed long-term label-retaining chief cells at 1 year after the GFP labelling in chief cells. However, only a very small subset of the long-term label-retaining chief cells displayed the reprogramming ability in homoeostasis. In contrast, we identified chief cell-originating SPEM cells as contributing to lineages within foveolar cell hyperplasia in response to the acute mucosal injury. CONCLUSION: Our study provides pivotal evidence for cell plasticity and lineage contributions from differentiated gastric chief cells during acute metaplasia development.


Assuntos
Celulas Principais Gástricas , Neoplasias Gástricas , Animais , Plasticidade Celular , Celulas Principais Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Metaplasia/metabolismo , Camundongos , Estômago , Neoplasias Gástricas/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G658-G674, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566727

RESUMO

Necrotizing enterocolitis (NEC), a life-threatening intestinal disease, is becoming a larger proportionate cause of morbidity and mortality in premature infants. To date, therapeutic options remain elusive. Based on recent cell therapy studies, we investigated the effect of a human placental-derived stem cell (hPSC) therapy on intestinal damage in an experimental NEC rat pup model. NEC was induced in newborn Sprague-Dawley rat pups for 4 days via formula feeding, hypoxia, and LPS. NEC pups received intraperitoneal (ip) injections of either saline or hPSC (NEC-hPSC) at 32 and 56 h into NEC induction. At 4 days, intestinal macroscopic and histological damage, epithelial cell composition, and inflammatory marker expression of the ileum were assessed. Breastfed (BF) littermates were used as controls. NEC pups developed significant bowel dilation and fragility in the ileum. Further, NEC induced loss of normal villi-crypt morphology, disruption of epithelial proliferation and apoptosis, and loss of critical progenitor/stem cell and Paneth cell populations in the crypt. hPSC treatment improved macroscopic intestinal health with reduced ileal dilation and fragility. Histologically, hPSC administration had a significant reparative effect on the villi-crypt morphology and epithelium. In addition to a trend of decreased inflammatory marker expression, hPSC-NEC pups had increased epithelial proliferation and decreased apoptosis when compared with NEC littermates. Further, the intestinal stem cell and crypt niche that include Paneth cells, SOX9+ cells, and LGR5+ stem cells were restored with hPSC therapy. Together, these data demonstrate hPSC can promote epithelial healing of NEC intestinal damage.NEW & NOTEWORTHY These studies demonstrate a human placental-derived stem cell (hPSC) therapeutic strategy for necrotizing enterocolitis (NEC). In an experimental model of NEC, hPSC administration improved macroscopic intestinal health, ameliorated epithelial morphology, and supported the intestinal stem cell niche. Our data suggest that hPSC are a potential therapeutic approach to attenuate established intestinal NEC damage. Further, we show hPSC are a novel research tool that can be utilized to elucidate critical neonatal repair mechanisms to overcome NEC.


Assuntos
Apoptose , Proliferação de Células , Enterocolite Necrosante/cirurgia , Íleo/patologia , Mucosa Intestinal/patologia , Celulas de Paneth/patologia , Placenta/transplante , Transplante de Células-Tronco , Animais , Animais Recém-Nascidos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Enterocolite Necrosante/genética , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Feminino , Humanos , Íleo/metabolismo , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Celulas de Paneth/metabolismo , Placenta/citologia , Gravidez , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOX9 , Nicho de Células-Tronco , Cicatrização
4.
Gastroenterology ; 159(6): 2077-2091.e8, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891625

RESUMO

BACKGROUND & AIMS: Severe injury to the lining of the stomach leads to changes in the epithelium (reprogramming) that protect and promote repair of the tissue, including development of spasmolytic polypeptide-expressing metaplasia (SPEM) and tuft and foveolar cell hyperplasia. Acute gastric damage elicits a type-2 inflammatory response that includes production of type-2 cytokines and infiltration by eosinophils and alternatively activated macrophages. Stomachs of mice that lack interleukin 33 (IL33) or interleukin 13 (IL13) did not undergo epithelial reprogramming after drug-induced injury. We investigated the role of group 2 innate lymphoid cells (ILC2s) in gastric epithelial repair. METHODS: Acute gastric injury was induced in C57BL/6J mice (wild-type and RAG1 knockout) by administration of L635. We isolated ILC2s by flow cytometry from stomachs of mice that were and were not given L635 and performed single-cell RNA sequencing. ILC2s were depleted from wild-type and RAG1-knockout mice by administration of anti-CD90.2. We assessed gastric cell lineages, markers of metaplasia, inflammation, and proliferation. Gastric tissue microarrays from patients with gastric adenocarcinoma were analyzed by immunostaining. RESULTS: There was a significant increase in the number of GATA3-positive ILC2s in stomach tissues from wild-type mice after L635-induced damage, but not in stomach tissues from IL33-knockout mice. We characterized a marker signature of gastric mucosal ILC2s and identified a transcription profile of metaplasia-associated ILC2s, which included changes in expression of Il5, Il13, Csf2, Pd1, and Ramp3; these changes were validated by quantitative polymerase chain reaction and immunocytochemistry. Depletion of ILC2s from mice blocked development of metaplasia after L635-induced injury in wild-type and RAG1-knockout mice and prevented foveolar and tuft cell hyperplasia and infiltration or activation of macrophages after injury. Numbers of ILC2s were increased in stomach tissues from patients with SPEM compared with patients with normal corpus mucosa. CONCLUSIONS: In analyses of stomach tissues from mice with gastric tissue damage and patients with SPEM, we found evidence of type 2 inflammation and increased numbers of ILC2s. Our results suggest that ILC2s coordinate the metaplastic response to severe gastric injury.


Assuntos
Mucosa Gástrica/patologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Animais , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Humanos , Interleucina-33/genética , Metaplasia/induzido quimicamente , Metaplasia/genética , Metaplasia/imunologia , Camundongos , Camundongos Knockout
5.
J Magn Reson Imaging ; 50(5): 1377-1392, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30925001

RESUMO

The complexity of modern in vivo magnetic resonance imaging (MRI) methods in oncology has dramatically changed in the last 10 years. The field has long since moved passed its (unparalleled) ability to form images with exquisite soft-tissue contrast and morphology, allowing for the enhanced identification of primary tumors and metastatic disease. Currently, it is not uncommon to acquire images related to blood flow, cellularity, and macromolecular content in the clinical setting. The acquisition of images related to metabolism, hypoxia, pH, and tissue stiffness are also becoming common. All of these techniques have had some component of their invention, development, refinement, validation, and initial applications in the preclinical setting using in vivo animal models of cancer. In this review, we discuss the genesis of quantitative MRI methods that have been successfully translated from preclinical research and developed into clinical applications. These include methods that interrogate perfusion, diffusion, pH, hypoxia, macromolecular content, and tissue mechanical properties for improving detection, staging, and response monitoring of cancer. For each of these techniques, we summarize the 1) underlying biological mechanism(s); 2) preclinical applications; 3) available repeatability and reproducibility data; 4) clinical applications; and 5) limitations of the technique. We conclude with a discussion of lessons learned from translating MRI methods from the preclinical to clinical setting, and a presentation of four fundamental problems in cancer imaging that, if solved, would result in a profound improvement in the lives of oncology patients. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1377-1392.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oncologia/tendências , Neoplasias/diagnóstico por imagem , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Concentração de Íons de Hidrogênio , Hipóxia , Processamento de Imagem Assistida por Computador , Imunoterapia , Substâncias Macromoleculares , Metástase Neoplásica , Transplante de Neoplasias , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Nanomedicina Teranóstica , Pesquisa Translacional Biomédica/tendências
6.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G67-G76, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881402

RESUMO

The plasticity of gastric chief cells is exemplified by their ability to transdifferentiate into spasmolytic polypeptide-expressing metaplasia (SPEM) after parietal cell loss. We sought to determine if chief cell maturity is a limiting factor in the capacity to transdifferentiate. Mist1-/- mice, previously shown to form only immature chief cells, were treated with DMP-777 or L635 to study the capability of these immature chief cells to transdifferentiate into a proliferative metaplastic lineage after acute parietal cell loss. Mist1-/- mice treated with DMP-777 showed fewer chief cell to SPEM transitions. Mist1-/- mice treated with L635 demonstrated significantly fewer proliferative SPEM cells compared with control mice. Thus immature chief cells were unable to transdifferentiate efficiently into SPEM after acute parietal cell loss. To determine whether chief cell age affects transdifferentiation into SPEM, we used tamoxifen to induce YFP expression in chief cells of Mist1CreER/+;RosaYFP mice and subsequently treated the cells with L635 to induce SPEM at 1 to 3.5 mo after tamoxifen treatment. After L635 treatment to induce acute parietal cell loss, 43% of all YFP-positive cells at 1 mo posttamoxifen were SPEM cells, of which 44% of these YFP-positive SPEM cells were proliferative. By 2 mo after tamoxifen induction, only 24% of marked SPEM cells were proliferating. However, by 3.5 mo after tamoxifen induction, only 12% of marked chief cells transdifferentiated into SPEM and none were proliferative. Thus, as chief cells age, they lose their ability to transdifferentiate into SPEM and proliferate. Therefore, both functional maturation and age limit chief cell plasticity. NEW & NOTEWORTHY: Previous investigations have indicated that spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomach arises from transdifferentiation of chief cells. Nevertheless, the intrinsic properties of chief cells that influence transdifferentiation have been largely unknown. We now report that the ability to transdifferentiate into SPEM is impaired in chief cells that lack full functional maturation, and as chief cells age, they lose their ability to transdifferentiate. Thus chief cell plasticity is dependent on both cell age and maturation.


Assuntos
Linhagem da Célula/fisiologia , Transdiferenciação Celular/fisiologia , Celulas Principais Gástricas/patologia , Estômago/patologia , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/fisiologia , Celulas Principais Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Metaplasia/metabolismo , Metaplasia/patologia , Camundongos , Camundongos Knockout , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia , Peptídeos/metabolismo
7.
Comput Methods Appl Mech Eng ; 314: 494-512, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28042181

RESUMO

The use of quantitative medical imaging data to initialize and constrain mechanistic mathematical models of tumor growth has demonstrated a compelling strategy for predicting therapeutic response. More specifically, we have demonstrated a data-driven framework for prediction of residual tumor burden following neoadjuvant therapy in breast cancer that uses a biophysical mathematical model combining reaction-diffusion growth/therapy dynamics and biomechanical effects driven by early time point imaging data. Whereas early work had been based on a limited dimensionality reduction (two-dimensional planar modeling analysis) to simplify the numerical implementation, in this work, we extend our framework to a fully volumetric, three-dimensional biophysical mathematical modeling approach in which parameter estimates are generated by an inverse problem based on the adjoint state method for numerical efficiency. In an in silico performance study, we show accurate parameter estimation with error less than 3% as compared to ground truth. We apply the approach to patient data from a patient with pathological complete response and a patient with residual tumor burden and demonstrate technical feasibility and predictive potential with direct comparisons between imaging data observation and model predictions of tumor cellularity and volume. Comparisons to our previous two-dimensional modeling framework reflect enhanced model prediction of residual tumor burden through the inclusion of additional imaging slices of patient-specific data.

8.
Phys Biol ; 12(4): 046006, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040472

RESUMO

Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor 'grown' for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model's accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioma/fisiopatologia , Animais , Simulação por Computador , Difusão , Feminino , Imageamento por Ressonância Magnética , Modelos Teóricos , Ratos , Ratos Wistar
9.
Gut ; 62(9): 1270-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773549

RESUMO

OBJECTIVES: Spasmolytic polypeptide-expressing metaplasia (SPEM) develops as a preneoplastic lesion in the stomachs of mice and humans after parietal cell loss. To identify the commonalities and differences between phenotypic SPEM lineages, SPEM were studied from three different mouse models of parietal cell loss: with chronic inflammation with Helicobacter felis infection; with acute inflammation with L635 treatment; and without inflammation following DMP-777 treatment. DESIGN: RNA transcripts from laser capture microdissected normal chief cells and SPEM lineages were compared using gene microarray. Alterations in transcripts were validated by quantitative real-time PCR. Clusterin and cystic fibrosis transmembrane conductance regulator (CFTR) were selected for immunohistochemical analysis in all mouse models as well as in human SPEM, intestinal metaplasia and gastric cancer. RESULTS: Transcript expression patterns demonstrated differences among the phenotypic SPEM models. Clusterin expression was significantly upregulated in all three mouse SPEM models as well as in human SPEM. The highest clusterin expression in human gastric cancers correlated with poor survival. Conversely, CFTR expression was upregulated only in SPEM with inflammation in mice. In humans, intestinal metaplasia, but not SPEM, expressed CFTR. CONCLUSIONS: While markers such as clusterin are expressed in all phenotypic SPEM lineages, distinct patterns of upregulated genes including CFTR are present in murine metaplasia associated with inflammation, indicative of progression of metaplasia towards a more intestinalised metaplastic phenotype.


Assuntos
Clusterina/metabolismo , Infecções por Helicobacter/complicações , Inflamação , Intestinos/patologia , Células Parietais Gástricas/patologia , Peptídeos , Animais , Azetidinas/farmacologia , Biomarcadores/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Microdissecção e Captura a Laser , Metaplasia/diagnóstico , Metaplasia/etiologia , Metaplasia/genética , Metaplasia/metabolismo , Camundongos , Camundongos Endogâmicos CFTR , Células Parietais Gástricas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Piperazinas/farmacologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Regulação para Cima
10.
J Pediatr Surg ; 59(3): 528-536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37858392

RESUMO

BACKGROUND: Within the premature infant intestine, oxygenation and motility play key physiological roles in healthy development and disease such as necrotizing enterocolitis. To date, there are limited techniques to reliably assess these physiological functions that are also clinically feasible for critically ill infants. To address this clinical need, we hypothesized that photoacoustic imaging (PAI) can provide non-invasive assessment of intestinal tissue oxygenation and motility to characterize intestinal physiology and health. METHODS: Ultrasound and photoacoustic images were acquired in 2-day and 4-day old neonatal rats. For PAI assessment of intestinal tissue oxygenation, an inspired gas challenge was performed using hypoxic, normoxic, and hyperoxic inspired oxygen (FiO2). For intestinal motility, oral administration of ICG contrast agent was used to compare control animals to an experimental model of loperamide-induced intestinal motility inhibition. RESULTS: PAI demonstrated progressive increases in oxygen saturation (sO2) as FiO2 increased, while the pattern of oxygen localization remained relatively consistent in both 2-day and 4-day old neonatal rats. Analysis of intraluminal ICG contrast enhanced PAI images yielded a map of the motility index in control and loperamide treated rats. From PAI analysis, loperamide significantly inhibited intestinal motility, with a 32.6% decrease in intestinal motility index scores in 4-day old rats. CONCLUSION: These data establish the feasibility and application of PAI to non-invasively and quantitatively measure intestinal tissue oxygenation and motility. This proof-of-concept study is an important first step in developing and optimizing photoacoustic imaging to provide valuable insight into intestinal health and disease to improve the care of premature infants.


Assuntos
Técnicas Fotoacústicas , Humanos , Recém-Nascido , Ratos , Animais , Animais Recém-Nascidos , Técnicas Fotoacústicas/métodos , Loperamida , Oxigênio , Intestinos/diagnóstico por imagem , Biomarcadores
11.
medRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076937

RESUMO

Personalized medicine efforts are focused on identifying biomarkers to guide individualizing neoadjuvant therapy regimens. In this work, we aim to validate a previously developed image data-driven mathematical modeling approach for dynamic characterization of breast cancer response to neoadjuvant therapy using a large, multi-site cohort. We retrospectively analyzed patients enrolled in the BMMR2 ACRIN 6698 subset at 10 institutions. Patients enrolled received four MRI examinations during neoadjuvant therapy with acquisitions at baseline (T 0 ), 3-weeks/early-treatment (T 1 ), 12-weeks/mid-treatment (T 2 ), and completion of therapy prior to surgery (T 3 ). A biophysical mathematical model of tumor growth is used extract metrics to characterize the dynamics of treatment response. Using predicted response at therapy conclusion and histogram summary metrics to quantify estimated tumor proliferation maps, we found univariate model-based metrics able to predict pathological response, with area under the receiver operating characteristic curve (AUC) ranging from 0.58 and 0.69 analyzing between T 0 and T 1 , and AUCs ranging from 0.72-0.76 analyzing between T 0 and T 2 . For hormone receptor (HR)-negative, human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients our model-based metrics achieved an AUC of 0.9 analyzing between T 0 and T 1 and AUC of 1.0 analyzing between T 0 and T 2 . This data shows the significant promise in developing these imaging-based biophysical mathematical modeling methods of dynamic characterization into a clinical decision support tool for individualizing treatment regimens based on patient-specific response.

12.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425813

RESUMO

Background: Within the premature infant intestine, oxygenation and motility play key physiological roles in healthy development and disease such as necrotizing enterocolitis. To date, there are limited techniques to reliably assess these physiological functions that are also clinically feasible for critically ill infants. To address this clinical need, we hypothesized that photoacoustic imaging (PAI) can provide non-invasive assessment of intestinal tissue oxygenation and motility to characterize intestinal physiology and health. Methods: Ultrasound and photoacoustic images were acquired in 2-day and 4-day old neonatal rats. For PAI assessment of intestinal tissue oxygenation, an inspired gas challenge was performed using hypoxic, normoxic, and hyperoxic inspired oxygen (FiO2). For intestinal motility, oral administration of ICG contrast agent was used to compare control animals to an experimental model of loperamide-induced intestinal motility inhibition. Results: PAI demonstrated progressive increases in oxygen saturation (sO2) as FiO2 increased, while the pattern of oxygen localization remained relatively consistent in both 2-day and 4-day old neonatal rats. Analysis of intraluminal ICG contrast enhanced PAI images yielded a map of the motility index in control and loperamide treated rats. From PAI analysis, loperamide significantly inhibited intestinal motility, with a 32.6% decrease in intestinal motility index scores in 4-day old rats. Conclusion: These data establish the feasibility and application of PAI to non-invasively and quantitatively measure intestinal tissue oxygenation and motility. This proof-of-concept study is an important first step in developing and optimizing photoacoustic imaging to provide valuable insight into intestinal health and disease to improve the care of premature infants. Highlights: Intestinal tissue oxygenation and intestinal motility are important biomarkers of intestinal physiology in health and disease of premature infants.This proof-of-concept preclinical rat study is the first to report application of photoacoustic imaging for the neonatal intestine.Photoacoustic imaging is demonstrated as a promising non-invasive diagnostic imaging method for quantifying intestinal tissue oxygenation and intestinal motility in premature infants.

13.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961632

RESUMO

Background: Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infants' intestinal tract that is exacerbated by significant difficulties in early and accurate diagnosis. In NEC disease, the intestine often exhibits hypoperfusion and dysmotility, which contributes to advanced disease pathogenesis. However, these physiological features cannot be accurately and quantitively assessed within the current constraints of imaging modalities frequently used in the clinic (plain film X-ray and ultrasound). We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively and quantitively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. As a first-in-disease application, we evaluated NEC pathogenesis using PAI to assess intestinal health biomarkers in a preclinical neonatal rat experimental model of NEC. Methods: NEC was induced in neonatal rat pups from birth to 4 days old via hypertonic formula feeding, full-body hypoxic stress, and lipopolysaccharide administration to mimic bacterial colonization. Healthy breastfed (BF) controls and NEC rat pups were imaged at 2- and 4-days old. Intestinal tissue oxygen saturation was measured with PAI imaging for oxy- and deoxyhemoglobin levels. To measure intestinal motility, ultrasound and co-registered PAI cine recordings were used to capture intestinal peristalsis motion and contrast agent (indocyanine green) transit within the intestinal lumen. Additionally, both midplane two-dimensional and volumetric three-dimensional imaging acquisitions were assessed for oxygenation and motility. Results: NEC pups showed a significant decrease of intestinal tissue oxygenation as compared to healthy BF controls at both ages (2-days old: 55.90% +/- 3.77% vs 44.12% +/- 7.18%; 4-days old: 56.13% +/- 3.52% vs 38.86% +/- 8.33%). Intestinal motility, assessed using a computational intestinal deformation analysis, demonstrated a significant reduction in the intestinal motility index in both early (2-day) and established (4-day) NEC. Extensive NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. Conclusions: This study presents PAI as a successful emerging diagnostic imaging modality for both intestinal tissue oxygenation and intestinal motility disease hallmarks in a rat NEC model. PAI presents enormous significance and potential for fundamentally changing current clinical paradigms for detecting and monitoring intestinal pathologies in the premature infant.

14.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37904976

RESUMO

Background: There is considerable focus on developing strategies for identifying subclinical cardiac decline prior to cardiac failure. Myocardial tissue elasticity changes may precede irreversible cardiac damage, providing promise for an early biomarker for cardiac decline. Biomarker strategies are of particular interest in cardio-oncology due to cardiotoxic effects of anti-neoplastic therapies, particularly anthracycline-based chemotherapeutics. Current clinical methods for diagnosing cardiotoxicity are too coarse to identify cardiac decline early enough for meaningful therapeutic intervention, or too cumbersome for clinical implementation. Methods: Utilizing changes in myocardial elasticity as a biomarker for subclinical cardiac decline, we developed a biomechanical model-based elasticity imaging methodology (BEIM) to estimate spatial maps of left ventricle (LV) myocardial elasticity. In this study, we employ this methodology to assess changes in LV elasticity in a non-human primate model of doxorubicin-induced cardiotoxicity. Cardiac magnetic resonance imaging of five African Green monkeys was acquired at baseline prior to doxorubicin administration, 6-weeks, and 15-weeks after final doxorubicin dose and histopathological samples of the LV were taken at 15-weeks after final doxorubicin dose. Spatial elasticity maps of the mid-short axis plane of the LV were estimated at each image acquisition. Global and regional LV elasticity were calculated and changes between imaging time points was assessed. LV elasticity at baseline and final time point were compared to cardiomyocyte size and collagen volume fraction measurements calculated from histopathological staining of archived tissue bank samples and study endpoint tissue samples utilizing Pearson's correlation coefficients. Results: We identify significant changes in LV elasticity between each imaging time point both globally and regionally. We also demonstrate strong correlation between LV elasticity and cardiomyocyte size and collagen volume fraction measurements. Results indicate that LV elasticity estimates calculated using BEIM correlate with histopathological changes that occur due to doxorubicin administration, validating LV elasticity solutions and providing significant promise for use of BEIM to non-invasively elucidate cardiac injury. Conclusions: This methodology can show progressive changes in LV elasticity and has potential to be a more sensitive indicator of elasticity changes than current clinical measures of cardiotoxicity. LV elasticity may provide a valuable biomarker for cardiotoxic effects of anthracycline-based chemotherapeutics and cardiac disease detection.

15.
Growth Factors ; 30(4): 230-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22559791

RESUMO

In this study, we examined the effectiveness of systemic subcutaneous delivery of recombinant Insulin-like growth factor (IGF)-I concurrently with primary cultured bone marrow-derived mesenchymal stem cell (MSC) transplant on fracture repair. We found that the fracture callus volume increased in mice with a stabilized tibia fracture that received IGF-I+MSC when compared with that in either untreated or MSC alone treated mice. In evaluating the callus tissue components, we found that the soft and new bone tissue volumes were significantly increased in IGF-I+MSC recipients. Histological and in-situ hybridization analyses confirmed a characteristic increase of newly forming bone in IGF-I+MSC recipients and that healing progressed mostly through endochondral ossification. The increase in soft and new bone tissue volumes correlated with increased force and toughness as determined by biomechanical testing. In conclusion, MSC transplant concurrent with systemic delivery of IGF-I improves fracture repair suggesting that IGF-I+MSC could be a novel therapeutic approach in patients who have inadequate fracture repair.


Assuntos
Consolidação da Fratura/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Células-Tronco Mesenquimais/citologia , Animais , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Feminino , Fibroblastos/citologia , Humanos , Hibridização In Situ , Camundongos , Proteínas Recombinantes/metabolismo , Medicina Regenerativa/métodos , Cicatrização , Microtomografia por Raio-X/métodos
16.
Stem Cells ; 29(10): 1537-48, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21786367

RESUMO

Failures of fracture repair (nonunions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe, and feasible. The contributions of MSC to the reparative process can occur through autocrine and paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSCs expressing insulin-like growth factor-I (MSC(IGF)), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and nonunions. MSC(IGF) or traceable MSC(IGF)-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knockout (Irs1(-/-)) mice with a stabilized tibia fracture. Healing was assessed using biomechanical testing, microcomputed tomography (µCT), and histological analyses. We found that systemically transplanted MSC(IGF) through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSC(IGF) to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced osteoglastogenesis in MSCs was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1(-/-) mice as a nonunion fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap. A callus that was basically absent in Irs1(-/-) left untransplanted or transplanted with MSCs. We provided evidence of effects and mechanisms for transplanted MSC(IGF) in fracture repair and potentially to treat nonunions.


Assuntos
Consolidação da Fratura , Fator de Crescimento Insulin-Like I/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/metabolismo , Diferenciação Celular , Ensaios de Migração Celular , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Osteogênese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Transfecção
17.
J Cell Biol ; 177(6): 1105-17, 2007 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-17576802

RESUMO

Despite its clinical significance, joint morphogenesis is still an obscure process. In this study, we determine the role of transforming growth factor beta (TGF-beta) signaling in mice lacking the TGF-beta type II receptor gene (Tgfbr2) in their limbs (Tgfbr2(PRX-1KO)). In Tgfbr2(PRX-1KO) mice, the loss of TGF-beta responsiveness resulted in the absence of interphalangeal joints. The Tgfbr2(Prx1KO) joint phenotype is similar to that in patients with symphalangism (SYM1-OMIM185800). By generating a Tgfbr2-green fluorescent protein-beta-GEO-bacterial artificial chromosome beta-galactosidase reporter transgenic mouse and by in situ hybridization and immunofluorescence, we determined that Tgfbr2 is highly and specifically expressed in developing joints. We demonstrated that in Tgfbr2(PRX-1KO) mice, the failure of joint interzone development resulted from an aberrant persistence of differentiated chondrocytes and failure of Jagged-1 expression. We found that TGF-beta receptor II signaling regulates Noggin, Wnt9a, and growth and differentiation factor-5 joint morphogenic gene expressions. In Tgfbr2(PRX-1KO) growth plates adjacent to interphalangeal joints, Indian hedgehog expression is increased, whereas Collagen 10 expression decreased. We propose a model for joint development in which TGF-beta signaling represents a means of entry to initiate the process.


Assuntos
Articulações/crescimento & desenvolvimento , Morfogênese , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia , Animais , Embrião de Mamíferos , Extremidades , Articulações/química , Articulações/embriologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/análise , Receptores de Fatores de Crescimento Transformadores beta/deficiência
18.
Sci Rep ; 12(1): 11718, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810187

RESUMO

Current tools to assess breast cancer response to neoadjuvant chemotherapy cannot reliably predict disease eradication, which if possible, could allow early cessation of therapy. In this work, we assessed the ability of an image data-driven mathematical modeling approach for dynamic characterization of breast cancer response to neoadjuvant therapy. We retrospectively analyzed patients enrolled in the I-SPY 2 TRIAL at the Atrium Health Wake Forest Baptist Comprehensive Cancer Center. Patients enrolled on the study received four MR imaging examinations during neoadjuvant therapy with acquisitions at baseline (T0), 3-weeks/early-treatment (T1), 12-weeks/mid-treatment (T2), and completion of therapy prior to surgery (T3). We use a biophysical mathematical model of tumor growth to generate spatial estimates of tumor proliferation to characterize the dynamics of treatment response. Using histogram summary metrics to quantify estimated tumor proliferation maps, we found strong correlation of mathematical model-estimated tumor proliferation with residual cancer burden, with Pearson correlation coefficients ranging from 0.88 and 0.97 between T0 and T2, representing a significant improvement from conventional assessment methods of change in mean apparent diffusion coefficient and functional tumor volume. This data shows the significant promise of imaging-based biophysical mathematical modeling methods for dynamic characterization of patient-specific response to neoadjuvant therapy with correlation to residual disease outcomes.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Terapia Neoadjuvante/métodos , Estudos Retrospectivos , Resultado do Tratamento
19.
J Med Imaging (Bellingham) ; 9(5): 056001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36305012

RESUMO

Purpose: Cardiotoxicity of antineoplastic therapies is increasingly a risk to cancer patients treated with curative intent with years of life to protect. Studies highlight the importance of identifying early cardiac decline in cancer patients undergoing cardiotoxic therapies. Accurate tools to study this are a critical clinical need. Current and emerging methods for assessing cardiotoxicity are too coarse for identifying preclinical cardiac degradation or too cumbersome for clinical implementation. Approach: In the previous work, we developed a noninvasive biomechanical model-based elasticity imaging methodology (BEIM) to assess mechanical stiffness changes of the left ventricle (LV) based on routine cine cardiac magnetic resonance (CMR) images. We examine this methodology to assess methodological reproducibility. We assessed a cohort of 10 participants that underwent test/retest short-axis CMR imaging at baseline and follow-up sessions as part of a previous publicly available study. We compare test images to retest images acquired within the same session to assess within-session reproducibility. We also compare test and retest images acquired at the baseline imaging session to test and retest images acquired at the follow-up imaging session to assess between-session reproducibility. Results: We establish the within-session and between-session reproducibility of our method, with global elasticity demonstrating repeatability within a range previously demonstrated in cardiac strain imaging studies. We demonstrate increased repeatability of global elasticity compared to segmental elasticity for both within-session and between-session. Within-subject coefficients of variation for within-session test/retest images globally for all modulus directions and a mechanical fractional mechanical stiffness anisotropy metric ranged from 11% to 28%. Conclusions: Results suggest that our methodology can reproducibly generate estimates of relative mechanical elasticity of the LV and provides a threshold for distinguishing true changes in myocardial mechanical stiffness from experimental variation. BEIM has applications in identifying preclinical cardiotoxicity in breast cancer patients undergoing antineoplastic therapies.

20.
J Med Imaging (Bellingham) ; 8(5): 056002, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34604442

RESUMO

Purpose: Assessing cardiotoxicity as a result of breast cancer therapeutics is increasingly important as breast cancer diagnoses are trending younger and overall survival is increasing. With evidence showing that prevention of cardiotoxicity plays a significant role in increasing overall survival, there is an unmet need for accurate non-invasive methods to assess cardiac injury due to cancer therapies. Current clinical methods are too coarse and emerging research methods have not yet achieved clinical implementation. Approach: As a proof of concept, we examine myocardial elasticity imaging in the setting of premenopausal women diagnosed with hormone receptor positive (HR-positive) breast cancer undergoing severe estrogen depletion, as cardiovascular injury from early estrogen depletion is well-established. We evaluate the ability of our model-based cardiac elasticity imaging analysis method to indicate subclinical cancer therapy-related cardiac decline by examining differences in the change in cardiac elasticity over time in two cohorts of premenopausal women either undergoing severe estrogen depletion for HR-positive breast cancer or triple negative breast cancer patients as comparators. Results: Our method was capable of producing functional mechanical elasticity maps of the left ventricle (LV). Using these elasticity maps, we show significant differences in cardiac mechanical elasticity in the HR-positive breast cancer cohort compared to the comparator cohort. Conclusions: We present our methodology to assess the mechanical stiffness of the LV by interrogating cardiac magnetic resonance images within a computational biomechanical model. Our preliminary study suggests the potential of this method for examining cardiac tissue mechanical stiffness properties as an early indicator of cardiac decline.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa