Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Hum Mol Genet ; 31(8): 1325-1335, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34740257

RESUMO

Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor ß1 (Tgf-ß) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-ß dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.


Assuntos
Síndrome de Ehlers-Danlos , Animais , Colágeno/genética , Colágeno Tipo V/genética , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Haploinsuficiência , Camundongos , Fator de Crescimento Transformador beta/genética
2.
Am J Hum Genet ; 108(9): 1710-1724, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450031

RESUMO

Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.


Assuntos
Osso e Ossos/metabolismo , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Osteoporose/genética , Animais , Ácido Ascórbico/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Complexo I de Proteína do Envoltório/deficiência , Proteína Coatomer/química , Proteína Coatomer/deficiência , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Embrião não Mamífero , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Complexo de Golgi , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Índice de Gravidade de Doença , Peixe-Zebra
3.
Hum Mutat ; 40(12): 2344-2352, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31389106

RESUMO

Campomelic dysplasia (CD) is an autosomal dominant, perinatal lethal skeletal dysplasia characterized by a small chest and short long bones with bowing of the lower extremities. CD is the result of heterozygosity for mutations in the gene encoding the chondrogenesis master regulator, SOX9. Loss-of-function mutations have been identified in most CD cases so it has been assumed that the disease results from haploinsufficiency for SOX9. Here, we identified distal truncating SOX9 mutations in four unrelated CD cases. The mutations all leave the dimerization and DNA-binding domains intact and cultured chondrocytes from three of the four cases synthesized truncated SOX9. Relative to CD resulting from haploinsufficiency, there was decreased transactivation activity toward a major transcriptional target, COL2A1, consistent with the mutations exerting a dominant-negative effect. For one of the cases, the phenotypic consequence was a very severe form of CD, with a pronounced effect on vertebral and limb development. The data identify a novel molecular mechanism of disease in CD in which the truncated protein leads to a distinct and more significant effect on SOX9 function.


Assuntos
Displasia Campomélica/genética , Sequenciamento do Exoma/métodos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Displasia Campomélica/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Feminino , Haploinsuficiência , Humanos , Gravidez , Diagnóstico Pré-Natal , Deleção de Sequência
4.
PLoS Genet ; 10(1): e1004121, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465224

RESUMO

Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A) ). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity versus complete ablation of the prolyl 3-hydroxylation complex.


Assuntos
Colágeno/genética , Hidroxilação/genética , Glicoproteínas de Membrana/genética , Osteogênese Imperfeita/genética , Osteogênese/genética , Proteínas/genética , Proteoglicanas/genética , Animais , Colágeno/química , Ciclofilinas/genética , Proteínas da Matriz Extracelular , Técnicas de Introdução de Genes , Glicoproteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares , Osteogênese Imperfeita/patologia , Dobramento de Proteína , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteoglicanas/metabolismo , Esqueleto
5.
J Biol Chem ; 290(29): 17679-17689, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26004778

RESUMO

Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/veterinária , Mutação Puntual , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Células Cultivadas , Colágeno Tipo I/análise , Modelos Animais de Doenças , Cães , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Choque Térmico HSP47/análise , Proteínas de Choque Térmico HSP47/metabolismo , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Processamento de Proteína Pós-Traducional , Estabilidade Proteica
6.
Hum Mol Genet ; 22(1): 1-17, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22949511

RESUMO

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.


Assuntos
Artrogripose/genética , Colágeno Tipo I/metabolismo , Genes Recessivos , Lisina/metabolismo , Mutação , Osteogênese Imperfeita/genética , Proteínas de Ligação a Tacrolimo/genética , Feminino , Humanos , Hidroxilação , Masculino , Processamento de Proteína Pós-Traducional
7.
Am J Hum Genet ; 86(3): 389-98, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20188343

RESUMO

Osteogenesis imperfecta (OI) is characterized by bone fragility and fractures that may be accompanied by bone deformity, dentinogenesis imperfecta, short stature, and shortened life span. About 90% of individuals with OI have dominant mutations in the type I collagen genes COL1A1 and COL1A2. Recessive forms of OI resulting from mutations in collagen-modifying enzymes and chaperones CRTAP, LEPRE1, PPIB, and FKBP10 have recently been identified. We have identified an autosomal-recessive missense mutation (c.233T>C, p.Leu78Pro) in SERPINH1, which encodes the collagen chaperone-like protein HSP47, that leads to a severe OI phenotype. The mutation results in degradation of the endoplasmic reticulum resident HSP47 via the proteasome. Type I procollagen accumulates in the Golgi of fibroblasts from the affected individual and a population of the secreted type I procollagen is protease sensitive. These findings suggest that HSP47 monitors the integrity of the triple helix of type I procollagen at the ER/cis-Golgi boundary and, when absent, the rate of transit from the ER to the Golgi is increased and helical structure is compromised. The normal 3-hydroxylation of the prolyl residue at position 986 of the triple helical domain of proalpha1(I) chains places the role of HSP47 downstream from the CRTAP/P3H1/CyPB complex that is involved in prolyl 3-hydroxylation. Identification of this mutation in SERPINH1 gives further insight into critical steps of the collagen biosynthetic pathway and the molecular pathogenesis of OI.


Assuntos
Proteínas de Choque Térmico HSP47/genética , Mutação de Sentido Incorreto , Osteogênese Imperfeita/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Pré-Escolar , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Consanguinidade , Sequência Conservada , DNA/genética , Retículo Endoplasmático/metabolismo , Evolução Fatal , Feminino , Genes Recessivos , Proteínas de Choque Térmico HSP47/metabolismo , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/metabolismo , Linhagem , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Radiografia , Homologia de Sequência de Aminoácidos
8.
Calcif Tissue Int ; 93(4): 338-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23508630

RESUMO

Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5-10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1, and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode, respectively, lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPINH1, which encodes the collagen chaperone HSP47; SERPINF1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include overmineralization or undermineralization defects as well as abnormal collagen posttranslational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen posttranslational modification, chaperoning of newly synthesized collagen chains into native molecules, or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking, and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on posttranslational features of bone collagen that have evolved to optimize it as a biomineral template.


Assuntos
Osso e Ossos/metabolismo , Colágeno Tipo I/fisiologia , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Artrogripose/genética , Artrogripose/metabolismo , Colágeno/química , Matriz Extracelular/metabolismo , Genes Dominantes , Genes Recessivos , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Camundongos , Mutação , Proteoglicanas/química
9.
J Biol Chem ; 286(35): 30662-30669, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757687

RESUMO

The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.


Assuntos
Colágenos Fibrilares/química , Pró-Colágeno-Prolina Dioxigenase/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Cartilagem/metabolismo , Linhagem Celular Tumoral , Condrócitos/metabolismo , Colágeno/química , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas/métodos , Oxigenases de Função Mista/química , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Ratos
10.
J Biol Chem ; 285(22): 16675-82, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20363745

RESUMO

The tensile strength of fibrillar collagens depends on stable intermolecular cross-links formed through the lysyl oxidase mechanism. Such cross-links based on hydroxylysine aldehydes are particularly important in cartilage, bone, and other skeletal tissues. In adult cartilages, the mature cross-linking structures are trivalent pyridinolines, which form spontaneously from the initial divalent ketoimines. We examined whether this was the complete story or whether other ketoimine maturation products also form, as the latter are known to disappear almost completely from mature tissues. Denatured, insoluble, bovine articular cartilage collagen was digested with trypsin, and cross-linked peptides were isolated by copper chelation chromatography, which selects for their histidine-containing sequence motifs. The results showed that in addition to the naturally fluorescent pyridinoline peptides, a second set of cross-linked peptides was recoverable at a high yield from mature articular cartilage. Sequencing and mass spectral analysis identified their origin from the same molecular sites as the initial ketoimine cross-links, but the latter peptides did not fluoresce and were nonreducible with NaBH(4). On the basis of their mass spectra, they were identical to their precursor ketoimine cross-linked peptides, but the cross-linking residue had an M+188 adduct. Considering the properties of an analogous adduct of identical added mass on a glycated lysine-containing peptide from type II collagen, we predicted that similar dihydroxyimidazolidine structures would form from their ketoimine groups by spontaneous oxidation and free arginine addition. We proposed the trivial name arginoline for the ketoimine cross-link derivative. Mature bovine articular cartilage contains about equimolar amounts of arginoline and hydroxylysyl pyridinoline based on peptide yields.


Assuntos
Aminoácidos/química , Cartilagem/metabolismo , Colágeno/química , Reagentes de Ligações Cruzadas/metabolismo , Iminas/química , Animais , Arginina/química , Bovinos , Cromatografia/métodos , Cromatografia Líquida de Alta Pressão/métodos , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Epífises/embriologia , Matriz Extracelular/metabolismo , Hidroxilisina/química , Lisina/química , Espectrometria de Massas/métodos , Peptídeos/química
11.
J Biol Chem ; 285(24): 18537-44, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20404341

RESUMO

The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an alpha1(II) and an alpha1(III) telopeptide to the alpha1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.


Assuntos
Cartilagem Articular/metabolismo , Colágeno Tipo III/metabolismo , Adolescente , Adulto , Idoso , Animais , Cartilagem/metabolismo , Bovinos , Condrócitos/metabolismo , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Humanos , Articulação do Joelho/patologia , Pessoa de Meia-Idade , Peptídeos/química , Polímeros/química , Tripsina/química
12.
J Biol Chem ; 285(4): 2580-90, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19940144

RESUMO

Collagen triple helices are stabilized by 4-hydroxyproline residues. No function is known for the much less common 3-hydroxyproline (3Hyp), although genetic defects inhibiting its formation cause recessive osteogenesis imperfecta. To help understand the pathogenesis, we used mass spectrometry to identify the sites and local sequence motifs of 3Hyp residues in fibril-forming collagens from normal human and bovine tissues. The results confirm a single, essentially fully occupied 3Hyp site (A1) at Pro(986) in A-clade chains alpha1(I), alpha1(II), and alpha2(V). Two partially modified sites (A2 and A3) were found at Pro(944) in alpha1(II) and alpha2(V) and Pro(707) in alpha2(I) and alpha2(V), which differed from A1 in sequence motif. Significantly, the distance between sites 2 and 3, 237 residues, is close to the collagen D-period (234 residues). A search for additional D-periodic 3Hyp sites revealed a fourth site (A4) at Pro(470) in alpha2(V), 237 residues N-terminal to site 3. In contrast, human and bovine type III collagen contained no 3Hyp at any site, despite a candidate proline residue and recognizable A1 sequence motif. A conserved histidine in mammalian alpha1(III) at A1 may have prevented 3-hydroxylation because this site in chicken type III was fully hydroxylated, and tyrosine replaced histidine. All three B-clade type V/XI collagen chains revealed the same three sites of 3Hyp but at different loci and sequence contexts from those in A-clade collagen chains. Two of these B-clade sites were spaced apart by 231 residues. From these and other observations we propose a fundamental role for 3Hyp residues in the ordered self-assembly of collagen supramolecular structures.


Assuntos
Colágeno/química , Colágeno/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Cartilagem/química , Cartilagem/metabolismo , Bovinos , Galinhas , Colágeno/genética , Colágeno Tipo I/química , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo II/química , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo III/química , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/química , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Colágeno Tipo XI/química , Colágeno Tipo XI/genética , Colágeno Tipo XI/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Hidroxiprolina/genética , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Adulto Jovem
13.
Nat Med ; 25(4): 583-590, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804514

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Heterozygous loss-of-function point mutations of miRNA genes are associated with several human congenital disorders1-5, but neomorphic (gain-of-new-function) mutations in miRNAs due to nucleotide substitutions have not been reported. Here we describe a neomorphic seed region mutation in the chondrocyte-specific, super-enhancer-associated MIR140 gene encoding microRNA-140 (miR-140) in a novel autosomal dominant human skeletal dysplasia. Mice with the corresponding single nucleotide substitution show skeletal abnormalities similar to those of the patients but distinct from those of miR-140-null mice6. This mutant miRNA gene yields abundant mutant miR-140-5p expression without miRNA-processing defects. In chondrocytes, the mutation causes widespread derepression of wild-type miR-140-5p targets and repression of mutant miR-140-5p targets, indicating that the mutation produces both loss-of-function and gain-of-function effects. Furthermore, the mutant miR-140-5p seed competes with the conserved RNA-binding protein Ybx1 for overlapping binding sites. This finding may explain the potent target repression and robust in vivo effect by this mutant miRNA even in the absence of evolutionary selection of miRNA-target RNA interactions, which contributes to the strong regulatory effects of conserved miRNAs7,8. Our study presents the first case of a pathogenic gain-of-function miRNA mutation and provides molecular insight into neomorphic actions of emerging and/or mutant miRNAs.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Mutação com Ganho de Função/genética , MicroRNAs/genética , Animais , Sequência de Bases , Condrócitos/metabolismo , Feminino , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , MicroRNAs/metabolismo , Linhagem , Fenótipo , Transcriptoma/genética
14.
J Bone Miner Res ; 32(6): 1309-1319, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177155

RESUMO

Lysine hydroxylation of type I collagen telopeptides varies from tissue to tissue, and these distinct hydroxylation patterns modulate collagen cross-linking to generate a unique extracellular matrix. Abnormalities in these patterns contribute to pathologies that include osteogenesis imperfecta (OI), fibrosis, and cancer. Telopeptide procollagen modifications are carried out by lysyl hydroxylase 2 (LH2); however, little is known regarding how this enzyme regulates hydroxylation patterns. We identified an ER complex of resident chaperones that includes HSP47, FKBP65, and BiP regulating the activity of LH2. Our findings show that FKBP65 and HSP47 modulate the activity of LH2 to either favor or repress its activity. BiP was also identified as a member of the complex, playing a role in enhancing the formation of the complex. This newly identified ER chaperone complex contributes to our understanding of how LH2 regulates lysyl hydroxylation of type I collagen C-telopeptides to affect the quality of connective tissues. © 2017 American Society for Bone and Mineral Research.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico/metabolismo , Lisina/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Estabilidade Enzimática , Humanos , Hidroxilação , Espectrometria de Massas , Camundongos , Modelos Biológicos , Mutação/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Ressonância de Plasmônio de Superfície
15.
Ultrastruct Pathol ; 30(5): 393-400, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17090519

RESUMO

Iliac crest growth cartilage biopsy in spondyloepimetaphyseal dysplasia (SEMD) showed an endoplasmic reticulum storage disorder of epiphyseal and physeal chondrocytes. Biochemical analyses of iliac crest cartilage extracellular matrix showed no signs of deficits in any of the structural collagens types II, IX, or XI. The physis was abnormal by light microscopy with chondrocyte columnation replaced by clone-like cell accumulations surrounded by widened acellular cartilage septae. The rough endoplasmic reticulum (RER) of most chondrocytes was dilated. In some cells the RER contained homogeneous material but in most there were abnormal electron-dense accumulations. In some the material was seen in small amounts adjacent to the edge of the RER. In others, increasingly large amounts were seen that were randomly oriented and diffusely marginated. In many cells, assembly had progressed to well-marginated collections of wavy rod-like structures with a circular orientation parallel to the outer edges of the RER. The electron-dense accumulations measured from 34 to 40 nm in diameter. Mutations have prevented normal processing of collagen such that exit from the RER is abnormally slowed and abnormal self-assembly occurs within the dilated cisternae.


Assuntos
Retículo Endoplasmático Rugoso/ultraestrutura , Dedos/anormalidades , Deformidades Articulares Adquiridas/patologia , Instabilidade Articular/patologia , Osteocondrodisplasias/patologia , Escoliose/patologia , Cartilagem/patologia , Criança , Condrócitos/ultraestrutura , Feminino , Dedos/diagnóstico por imagem , Humanos , Deformidades Articulares Adquiridas/diagnóstico por imagem , Instabilidade Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Microscopia Eletrônica de Transmissão/métodos , Osteocondrodisplasias/diagnóstico por imagem , Radiografia , Escoliose/diagnóstico por imagem , Síndrome
16.
J Bone Miner Res ; 30(3): 489-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25251575

RESUMO

Osteogenesis imperfecta (OI) type V is characterized by increased bone fragility, long bone deformities, hyperplastic callus formation, and calcification of interosseous membranes. It is caused by a recurrent mutation in the 5' UTR of the IFITM5 gene (c.-14C > T). This mutation introduces an alternative start codon, adding 5 amino acid residues to the N-terminus of the protein. The mechanism whereby this novel IFITM5 protein causes OI type V is yet to be defined. To address this, we created transgenic mice expressing either the wild-type or the OI type V mutant IFITM5 under the control of an osteoblast-specific Col1a1 2.3-kb promoter. These mutant IFITM5 transgenic mice exhibited perinatal lethality, whereas wild-type IFITM5 transgenic mice showed normal growth and development. Skeletal preparations and radiographs performed on E15.5 and E18.5 OI type V transgenic embryos revealed delayed/abnormal mineralization and skeletal defects, including abnormal rib cage formation, long bone deformities, and fractures. Primary osteoblast cultures, derived from mutant mice calvaria at E18.5, showed decreased mineralization by Alizarin red staining, and RNA isolated from calvaria showed reduced expression of osteoblast differentiation markers such as Osteocalcin, compared with nontransgenic littermates and wild-type mice calvaria, consistent with the in vivo phenotype. Importantly, overexpression of wild-type Ifitm5 did not manifest a significant bone phenotype. Collectively, our results suggest that expression of mutant IFITM5 causes abnormal skeletal development, low bone mass, and abnormal osteoblast differentiation. Given that neither overexpression of the wild-type Ifitm5, as shown in our model, nor knock-out of Ifitm5, as previously published, showed significant bone abnormalities, we conclude that the IFITM5 mutation in OI type V acts in a neomorphic fashion.


Assuntos
Proteínas de Membrana/genética , Mutação , Animais , Camundongos , Camundongos Transgênicos
17.
Matrix Biol ; 22(2): 123-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12782139

RESUMO

Genetic polymorphisms that encode a tryptophan (Trp) residue in the triple-helical domain of the alpha2 (Trp2) or alpha3 chain (Trp3) of human type IX collagen have been linked to risk of degenerative intervertebral disc disease. To determine whether these two allelic variants express protein that may affect the extracellular matrix of cartilage in vivo, we examined the properties of resident type IX collagen in an anonymous collection of embryonic and fetal human cartilage samples screened for Trp genotypes. No difference was found in the yield and electrophoretic properties of pepsin-solubilized type IX collagen between Trp2, Trp3 and non-Trp cartilage samples. On Western blot analysis, a polyclonal antiserum raised against a synthetic peptide matching the immediate Trp-containing sequence of the Trp3 allele reacted specifically with the alpha3(IX) chain prepared from Trp3 cartilage samples. Two-dimensional peptide mapping of type IX collagen in CNBr-digests of whole tissue gave indistinguishable fingerprints for Trp2, Trp3 and control tissues, including the yield of cross-linked peptides. Analysis of one cartilage sample that was homozygous for the Trp2 allele also gave a normal yield of collagen IX, including its alpha2 chain and a normal profile of cross-linked peptides. Together, the findings indicate that both Trp2 and Trp3 allelic products are incorporated into the cross-linked fibrillar network of developing human cartilage apparently normally. Any pathological consequences are likely, therefore, to be long-term and indirect rather than from overt misassembly of matrix.


Assuntos
Cartilagem/embriologia , Colágeno Tipo IX/metabolismo , Matriz Extracelular/metabolismo , Variação Genética , Triptofano/genética , Alelos , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Colágeno Tipo IX/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário e Fetal , Frequência do Gene , Humanos , RNA Mensageiro/metabolismo
18.
Matrix Biol ; 34: 105-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24113490

RESUMO

Until now, no biological tools have been available to determine if a cross-linked collagen fibrillar network derived entirely from type IIA procollagen isoforms, can form in the extracellular matrix (ECM) of cartilage. Recently, homozygous knock-in transgenic mice (Col2a1(+ex2), ki/ki) were generated that exclusively express the IIA procollagen isoform during post-natal development while type IIB procollagen, normally present in the ECM of wild type mice, is absent. The difference between these Col2a1 isoforms is the inclusion (IIA) or exclusion (IIB) of exon 2 that is alternatively spliced in a developmentally regulated manner. Specifically, chondroprogenitor cells synthesize predominantly IIA mRNA isoforms while differentiated chondrocytes produce mainly IIB mRNA isoforms. Recent characterization of the Col2a1(+ex2) mice has surprisingly shown that disruption of alternative splicing does not affect overt cartilage formation. In the present study, biochemical analyses showed that type IIA collagen extracted from ki/ki mouse rib cartilage can form homopolymers that are stabilized predominantly by hydroxylysyl pyridinoline (HP) cross-links at levels that differed from wild type rib cartilage. The findings indicate that mature type II collagen derived exclusively from type IIA procollagen molecules can form hetero-fibrils with type XI collagen and contribute to cartilage structure and function. Heteropolymers with type XI collagen also formed. Electron microscopy revealed mainly thin type IIA collagen fibrils in ki/ki mouse rib cartilage. Immunoprecipitation and mass spectrometry of purified type XI collagen revealed a heterotrimeric molecular composition of α1(XI)α2(XI)α1(IIA) chains where the α1(IIA) chain is the IIA form of the α3(XI) chain. Since the N-propeptide of type XI collagen regulates type II collagen fibril diameter in cartilage, the retention of the exon 2-encoded IIA globular domain would structurally alter the N-propeptide of type XI collagen. This structural change may subsequently affect the regulatory function of type XI collagen resulting in the collagen fibril and cross-linking differences observed in this study.


Assuntos
Condrogênese/genética , Colágeno Tipo II/biossíntese , Matriz Extracelular/genética , Isoformas de RNA/biossíntese , Animais , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Colágeno Tipo II/genética , Colágeno Tipo XI/genética , Colágeno Tipo XI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Microfibrilas/genética , Microfibrilas/ultraestrutura
19.
Nat Med ; 20(6): 670-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24793237

RESUMO

Osteogenesis imperfecta (OI) is a heritable disorder, in both a dominant and recessive manner, of connective tissue characterized by brittle bones, fractures and extraskeletal manifestations. How structural mutations of type I collagen (dominant OI) or of its post-translational modification machinery (recessive OI) can cause abnormal quality and quantity of bone is poorly understood. Notably, the clinical overlap between dominant and recessive forms of OI suggests common molecular pathomechanisms. Here, we show that excessive transforming growth factor-ß (TGF-ß) signaling is a mechanism of OI in both recessive (Crtap(-/-)) and dominant (Col1a2(tm1.1Mcbr)) OI mouse models. In the skeleton, we find higher expression of TGF-ß target genes, higher ratio of phosphorylated Smad2 to total Smad2 protein and higher in vivo Smad2 reporter activity. Moreover, the type I collagen of Crtap(-/-) mice shows reduced binding to the small leucine-rich proteoglycan decorin, a known regulator of TGF-ß activity. Anti-TGF-ß treatment using the neutralizing antibody 1D11 corrects the bone phenotype in both forms of OI and improves the lung abnormalities in Crtap(-/-) mice. Hence, altered TGF-ß matrix-cell signaling is a primary mechanism in the pathogenesis of OI and could be a promising target for the treatment of OI.


Assuntos
Osteogênese Imperfeita/fisiopatologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Análise de Variância , Animais , Colágeno Tipo I/genética , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular , Feminino , Immunoblotting , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares , Osteogênese Imperfeita/metabolismo , Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície , Microtomografia por Raio-X
20.
Spine (Phila Pa 1976) ; 36(24): 2031-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21311409

RESUMO

STUDY DESIGN: Immunohistochemical analysis of type IX collagen in disc tissue from spinal fusion patients. OBJECTIVE: To determine if collagen IX can be detected in adult disc tissue removed at spinal fusion surgery from patients either with or without degeneration-associated tryptophan single nucleotide polymorphisms (SNPs) and whether the distribution is associated either with severity of degeneration or incidence of a collagen IX SNP genotype. SUMMARY OF BACKGROUND DATA: Genetic factors are strongly associated with risk of development and/or progression of disc degeneration. Two SNPs that introduce tryptophan polymorphisms in COL9A2 and COL9A3 are independently linked to an increased risk of lumbar disc disease. Although tryptophan variants are associated with accelerated degeneration, it is not known if collagen IX can be detected in adult disc tissue. METHODS: We selected age-matched disc samples from five clinical groups: fracture with Trp(-) (six cases), herniation (six cases), degeneration (five cases), spondylolisthesis with Trp(-) (eight cases), and spondylolisthesis/herniation/fracture with Trp(+) (six cases of Trp3 allele and one case of Trp2 allele). Using hematoxylin and eosin staining and immunohistochemical staining (collagens IX and IIA), 78 sections from 32 patients were analyzed. Selected disc tissues were assayed biochemically for collagen IX. RESULTS: Focal deposition of collagen IX was observed in regions of adult human disc tissue from spines showing degenerative changes in patients whether or not they were positive for a tryptophan SNP. However, in nondegenerative control disc tissue from fracture cases, little or no collagen IX was detected. The latter finding was confirmed by direct biochemical analyses for collagen IX in pooled samples of normal adult human annulus fibrosus or nucleus pulposus. CONCLUSION: During growth and maturation of the disc, collagen IX is presumably removed completely during matrix remodeling so that the protein is absent from normal adult annulus and nucleus but can reappear at sites of degeneration presumably as part of a repair response to mechanical injury.


Assuntos
Colágeno Tipo IX/genética , Predisposição Genética para Doença/genética , Degeneração do Disco Intervertebral/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Alelos , Western Blotting , Colágeno Tipo IX/metabolismo , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/metabolismo , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fraturas da Coluna Vertebral/genética , Fraturas da Coluna Vertebral/metabolismo , Fraturas da Coluna Vertebral/cirurgia , Estenose Espinal/genética , Estenose Espinal/metabolismo , Estenose Espinal/cirurgia , Espondilolistese/genética , Espondilolistese/metabolismo , Triptofano/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa