RESUMO
In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515).
Assuntos
Proteínas de Bactérias/análise , Chromatiaceae/química , Chromatiaceae/metabolismo , Proteoma/análise , Enxofre/metabolismo , Processos Autotróficos , Eletroforese em Gel Bidimensional , Inativação Gênica , Genes Bacterianos , Espectrometria de Massas , Oxirredução , Processos Fototróficos , Sulfetos/metabolismo , Tiossulfatos/metabolismoRESUMO
The purple sulfur bacterium Allochromatium vinosum DSM 180(T) is one of the best-studied sulfur-oxidizing anoxygenic phototrophic bacteria, and it has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism's high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur, or sulfite compared to photoorganoheterotrophic growth on malate. Differential expression of 1,178 genes was observed, corresponding to 30% of the A. vinosum genome. Relative transcription of 551 genes increased significantly during growth on one of the different sulfur sources, while the relative transcript abundance of 627 genes decreased. A significant number of genes that revealed strongly enhanced relative transcription levels have documented sulfur metabolism-related functions. Among these are the dsr genes, including dsrAB for dissimilatory sulfite reductase, and the sgp genes for the proteins of the sulfur globule envelope, thus confirming former results. In addition, we identified new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Those four genes for hypothetical proteins that exhibited the strongest increases of mRNA levels on sulfide and elemental sulfur, respectively, were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for sulfur globule formation during the oxidation of sulfide and thiosulfate and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria.
Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/crescimento & desenvolvimento , Chromatiaceae/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Compostos de Enxofre/metabolismo , Proteínas de Bactérias/genética , Chromatiaceae/metabolismo , Meios de Cultura/química , Genes Bacterianos , Sulfito de Hidrogênio Redutase/genética , Sulfito de Hidrogênio Redutase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Sulfetos/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismoRESUMO
Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to changes of nutritional conditions have been performed and these focused on gene expression and protein levels. Here, we provide a study on metabolite composition and relate it with transcriptional and proteomic profiling data to provide a more comprehensive insight on the systems level adjustment to available nutrients. We identified 131 individual metabolites and compared availability and concentration under four different growth conditions (sulfide, thiosulfate, elemental sulfur, and malate) and on sulfide for a ΔdsrJ mutant strain. During growth on malate, cysteine was identified to be the least abundant amino acid. Concentrations of the metabolite classes "amino acids" and "organic acids" (i.e., pyruvate and its derivatives) were higher on malate than on reduced sulfur compounds by at least 20 and 50 %, respectively. Similar observations were made for metabolites assigned to anabolism of glucose. Growth on sulfur compounds led to enhanced concentrations of sulfur containing metabolites, while other cell constituents remained unaffected or decreased. Incapability of sulfur globule oxidation of the mutant strain was reflected by a low energy level of the cell and consequently reduced levels of amino acids (40 %) and sugars (65 %).
RESUMO
Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program.