Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 36(5): e22270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35412656

RESUMO

Mutations in the CFTR gene lead to cystic fibrosis, a genetic disease associated with chronic infection and inflammation and ultimately respiratory failure. The most common CF-causing mutation is F508del and CFTR modulators (correctors and potentiators) are being developed to rescue its trafficking and activity defects. However, there are currently no modulators that stabilize the rescued membrane F508del-CFTR which is endocytosed and quickly degraded resulting in a shorter half-life than wild-type (WT). We previously reported that the extracellular signal-regulated kinase (ERK) MAPK pathway is involved in CFTR degradation upon cigarette smoke exposure. Interestingly, we found that ERK phosphorylation was increased in CF human bronchial epithelial (HBE) cells (CF-HBE41o- and primary CF-HBE) compared to non-CF controls, and this was likely due to signaling by the epidermal growth factor receptor (EGFR). EGFR can be activated by several ligands, and we provide evidence that amphiregulin (AREG) is important for activating this signaling axis in CF. The natural osmolyte ectoine stabilizes membrane macromolecules. We show that ectoine decreases ERK phosphorylation, increases the half-life of rescued CFTR, and increases CFTR-mediated chloride transport in combination with the CFTR corrector VX-661. Additionally, ectoine reduces production of AREG and interleukin-8 by CF primary bronchial epithelial cells. In conclusion, EGFR-ERK signaling negatively regulates CFTR and is hyperactive in CF, and targeting this axis with ectoine may prove beneficial for CF patients.


Assuntos
Diamino Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Diamino Aminoácidos/farmacologia , Diamino Aminoácidos/uso terapêutico , Benzodioxóis , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis , Mutação
2.
Respir Res ; 20(1): 200, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477092

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a complex disease resulting in respiratory failure and represents the third leading cause of global death. The two classical phenotypes of COPD are chronic bronchitis and emphysema. Owing to similarities between chronic bronchitis and the autosomal-recessive disease Cystic Fibrosis (CF), a significant body of research addresses the hypothesis that dysfunctional CF Transmembrane Conductance Regulator (CFTR) is implicated in the pathogenesis of COPD. Much less attention has been given to emphysema in this context, despite similarities between the two diseases. These include early-onset cellular senescence, similar comorbidities, and the finding that CF patients develop emphysema as they age. To determine a potential role for CFTR dysfunction in the development of emphysema, Cftr+/+ (Wild-type; WT), Cftr+/- (heterozygous), and Cftr-/- (knock-out; KO) mice were aged or exposed to cigarette smoke and analyzed for airspace enlargement. Aged knockout mice demonstrated increased alveolar size compared to age-matched wild-type and heterozygous mice. Furthermore, both heterozygous and knockout mice developed enlarged alveoli compared to their wild-type counterparts following chronic smoke exposure. Taken into consideration with previous findings that cigarette smoke leads to reduced CFTR function, our findings suggest that decreased CFTR expression sensitizes the lung to the effects of cigarette smoke. These findings may caution normally asymptomatic CF carriers against exposure to cigarette smoke; as well as highlight emphysema as a future challenge for CF patients as they continue to live longer. More broadly, our data, along with clinical findings, may implicate CFTR dysfunction in a pathology resembling accelerated aging.


Assuntos
Envelhecimento/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Enfisema Pulmonar/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Expressão Gênica , Exposição por Inalação/efeitos adversos , Camundongos , Camundongos Knockout , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia
3.
Biochim Biophys Acta Gen Subj ; 1862(9): 1988-1994, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928919

RESUMO

BACKGROUND: Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function. METHODS: Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR. RESULTS: THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression. CONCLUSIONS AND GENERAL SIGNIFICANCE: THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells.


Assuntos
Brônquios/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dronabinol/farmacologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Alucinógenos/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
4.
Cell Biochem Biophys ; 80(1): 217-228, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767151

RESUMO

Cigarette smoke deregulates several biological pathways by modulating gene expression in airway epithelial cells and altering the physiology of the airway epithelium. The effects of repeated exposures of electronic cigarette delivery systems (ENDS) on gene expression in airway epithelium are relatively unknown. In order to assess the effect of repeated exposures of ENDS, primary normal human bronchial epithelial (NHBE) cells grown at air-liquid interface (ALI) were exposed to cigarette and ENDS preparations daily for 10 days. Cigarette smoke preparations significantly altered gene expression in a dose-dependent manner compared to vehicle control, including genes linked to oxidative stress, xenobiotic metabolism, cancer pathways, epithelial-mesenchymal transition, fatty acid metabolism, degradation of collagen and extracellular matrix, O-glycosylation, and chemokines/cytokines, which are known pathways found to be altered in smokers. Conversely, ENDS preparations had minimal effect on transcriptional pathways. This study revealed that a sub-chronic exposure of primary NHBE cultures to cigarette and ENDS preparations differentially regulated genes and canonical pathways, with minimal effect observed with ENDS preparations compared to cigarette preparations. This study also demonstrates the versatility of primary NHBE cultures at ALI to evaluate repeat-dose exposures of tobacco products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Brônquios/metabolismo , Células Epiteliais , Humanos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Transcriptoma
5.
J Med Chem ; 63(24): 15773-15784, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33314931

RESUMO

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, encoding for a chloride ion channel. Membrane expression of CFTR is negatively regulated by CFTR-associated ligand (CAL). We previously showed that inhibition of the CFTR/CAL interaction with a cell-permeable peptide improves the function of rescued F508del-CFTR. In this study, optimization of the peptidyl inhibitor yielded PGD97, which exhibits a KD value of 6 nM for the CAL PDZ domain, ≥ 130-fold selectivity over closely related PDZ domains, and a serum t1/2 of >24 h. In patient-derived F508del homozygous cells, PGD97 (100 nM) increased short-circuit currents by ∼3-fold and further potentiated the therapeutic effects of small-molecule correctors (e.g., VX-661) by ∼2-fold (with an EC50 of ∼10 nM). Our results suggest that PGD97 may be used as a novel treatment for CF, either as a single agent or in combination with small-molecule correctors/potentiators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Estabilidade de Medicamentos , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Mutação , Domínios PDZ , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Permeabilidade/efeitos dos fármacos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
6.
J Cyst Fibros ; 19(5): 752-761, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565193

RESUMO

BACKGROUND: In vitro cystic fibrosis (CF) models are crucial for understanding the mechanisms and consequences of the disease. They are also the gold standard for pre-clinical efficacy studies of current and novel CF drugs. However, few studies have investigated expansion and differentiation of primary CF human bronchial epithelial (CF-HBE) cells. Here we describe culture conditions to expand primary CF airway cells while preserving their ability to differentiate into 3D epithelial cultures expressing functional cystic fibrosis transmembrane conductance regulator (CFTR) ion channels that responds to CFTR modulators. METHODS: Primary CF airway cells were expanded using PneumaCultTM-Ex Plus (StemCell Technologies) medium with no feeder cells or added Rho kinase (ROCK) inhibitor. Differentially passaged CF-HBE cells at the air-liquid interface (ALI) were characterized phenotypically and functionally in response to the CFTR corrector drug VX-661 (Tezacaftor). RESULTS: CF-HBE primary cells, expanded up to six passages (~25 population doublings), differentiated into 3D epithelial cultures as evidenced by trans-epithelial electrical resistance (TEER) of >400 Ohms∙cm2 and presence of pseudostratified columnar ciliated epithelium with goblet cells. However, up to passage five cells from most donors showed increased CFTR-mediated short-circuit currents when treated with the corrector drug, VX-661. Ciliary beat frequency (CBF) also increased with the corrector VX-661. CONCLUSIONS: CF donor-derived airway cells can be expanded without the use of feeder cells or additional ROCK inhibitor, and still achieve optimal 3D epithelial cultures that respond to CFTR modulators. The study of rare CF mutations could benefit from cell expansion and could lead to the design of personalized medicine/treatments.


Assuntos
Benzodioxóis/farmacologia , Brônquios/crescimento & desenvolvimento , Brônquios/patologia , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Indóis/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Epiteliais/fisiologia , Células Alimentadoras , Humanos
7.
J Mol Biol ; 431(2): 368-390, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30458172

RESUMO

Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that signal in response to collagen. We had previously shown that collagen binding leads to clustering of DDR1b, a process partly mediated by its extracellular domain (ECD). In this study, we investigated (i) the impact of the oligomeric state of DDR2 ECD on collagen binding and fibrillogenesis, (ii) the effect of collagen binding on DDR2 clustering, and (iii) the spatial distribution and phosphorylation status of DDR1b and DDR2 after collagen stimulation. Studies were conducted using purified recombinant DDR2 ECD proteins in monomeric, dimeric or oligomeric state, and MC3T3-E1 cells expressing full-length DDR2-GFP or DDR1b-YFP. We show that the oligomeric form of DDR2 ECD displayed enhanced binding to collagen and inhibition of fibrillogenesis. Using atomic force and fluorescence microscopy, we demonstrate that unlike DDR1b, DDR2 ECD and DDR2-GFP do not undergo collagen-induced receptor clustering. However, after prolonged collagen stimulation, both DDR1b-YFP and DDR2-GFP formed filamentous structures consistent with spatial re-distribution of DDRs in cells. Immunocytochemistry revealed that while DDR1b clusters co-localized with non-fibrillar collagen, DDR1b/DDR2 filamentous structures associated with collagen fibrils. Antibodies against a tyrosine phosphorylation site in the intracellular juxtamembrane region of DDR1b displayed positive signals in both DDR1b clusters and filamentous structures. However, only the filamentous structures of both DDR1b and DDR2 co-localized with antibodies directed against tyrosine phosphorylation sites within the receptor kinase domain. Our results uncover key differences and similarities in the clustering abilities and spatial distribution of DDR1b and DDR2 and their impact on receptor phosphorylation.


Assuntos
Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Fosforilação/fisiologia , Células 3T3 , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Análise por Conglomerados , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos , Ligação Proteica/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Tirosina/metabolismo
8.
J Cyst Fibros ; 18(5): 622-629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30366849

RESUMO

BACKGROUND: There are no effective treatments for Burkholderia cenocepacia in patients with cystic fibrosis (CF) due to bacterial multi-drug resistance and defective host killing. We demonstrated that decreased bacterial killing in CF is caused by reduced macrophage autophagy due to defective cystic fibrosis transmembrane conductance regulator (CFTR) function. AR-12 is a small molecule autophagy inducer that kills intracellular pathogens such as Francisella. We evaluated the efficacy of AR-12 and a new analogue AR-13 in reducing bacterial burden in CF phagocytes. METHODS: Human CF and non-CF peripheral blood monocyte-derived macrophages, neutrophils, and nasal epithelial cells were exposed to CF bacterial strains in conjunction with treatment with antibiotics and/or AR compounds. RESULTS: AR-13 and not AR-12 had growth inhibition on B. cenocepacia and methicillin-resistantStaphylococcus aureus (MRSA) in media alone. There was a 99% reduction in MRSA in CF macrophages, 71% reduction in Pseudomonas aeruginosa in CF neutrophils, and 70% reduction in non-CF neutrophils using AR-13. Conversely, there was no reduction in B. cenocepacia in infected CF and non-CF macrophages using AR-13 alone, but AR-13 and antibiotics synergistically reduced B. cenocepacia in CF macrophages. AR-13 improved autophagy in CF macrophages and CF patient-derived epithelial cells, and increased CFTR protein expression and channel function in CF epithelial cells. CONCLUSIONS: The novel AR-12 analogue AR-13, in combination with antibiotics, reduced antibiotic-resistant bacterial burden in CF phagocytes, which correlated with increased autophagy and CFTR expression. AR-13 is a novel therapeutic for patients infected with B. cenocepacia and other resistant organisms that lack effective therapies.


Assuntos
Carga Bacteriana/efeitos dos fármacos , Burkholderia cenocepacia/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/patologia , Fagócitos/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cultura de Células , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-27754353

RESUMO

Secondhand smoke exposure (SHSe) has multiple adverse effects on lung function and growth, nutrition, and immune function in children; it is increasingly being recognized as an important modifier of disease severity for children with chronic diseases such as cystic fibrosis (CF). This review examines what is known regarding the prevalence of SHSe in CF, with the majority of reviewed studies utilizing parental-reporting of SHSe without an objective biomarker of exposure. A wide range of SHSe is reported in children with CF, but under-reporting is common in studies involving both reported and measured SHSe. Additionally, the impact of SHSe on respiratory and nutritional health is discussed, with potential decreases in long-term lung function, linear growth, and weight gain noted in CF children with SHSe. Immunologic function in children with CF and SHSe remains unknown. The impact of SHSe on cystic fibrosis transmembrane conductance regulator (CFTR) function is also examined, as reduced CFTR function may be a pathophysiologic consequence of SHSe in CF and could modulate therapeutic interventions. Finally, potential interventions for ongoing SHSe are delineated along with recommended future areas of study.


Assuntos
Fibrose Cística/epidemiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa