RESUMO
Autism spectrum disorders (ASD) involve brain wide abnormalities that contribute to a constellation of symptoms including behavioral inflexibility, cognitive dysfunction, learning impairments, altered social interactions, and perceptive time difficulties. Although a single genetic variation does not cause ASD, genetic variations such as one involving a non-canonical Wnt signaling gene, Prickle2, has been found in individuals with ASD. Previous work looking into phenotypes of Prickle2 knock-out (Prickle2-/-) and heterozygous mice (Prickle2-/+) suggest patterns of behavior similar to individuals with ASD including altered social interaction and behavioral inflexibility. Growing evidence implicates the cerebellum in ASD. As Prickle2 is expressed in the cerebellum, this animal model presents a unique opportunity to investigate the cerebellar contribution to autism-like phenotypes. Here, we explore cerebellar structural and physiological abnormalities in animals with Prickle2 knockdown using immunohistochemistry, whole-cell patch clamp electrophysiology, and several cerebellar-associated motor and timing tasks, including interval timing and eyeblink conditioning. Histologically, Prickle2-/- mice have significantly more empty spaces or gaps between Purkinje cells in the posterior lobules and a decreased propensity for Purkinje cells to fire action potentials. These structural cerebellar abnormalities did not impair cerebellar-associated behaviors as eyeblink conditioning and interval timing remained intact. Therefore, although Prickle-/- mice show classic phenotypes of ASD, they do not recapitulate the involvement of the adult cerebellum and may not represent the pathophysiological heterogeneity of the disorder.
Assuntos
Cerebelo , Proteínas com Domínio LIM , Células de Purkinje , Animais , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/deficiência , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Técnicas de Silenciamento de GenesRESUMO
The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid-sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH. We found that inhaled CO(2) reduced brain pH and evoked fear behavior in mice. Eliminating or inhibiting ASIC1a markedly impaired this activity, and localized ASIC1a expression in the amygdala rescued the CO(2)-induced fear deficit of ASIC1a null animals. Buffering pH attenuated fear behavior, whereas directly reducing pH with amygdala microinjections reproduced the effect of CO(2). These data identify the amygdala as an important chemosensor that detects hypercarbia and acidosis and initiates behavioral responses. They also give a molecular explanation for how rising CO(2) concentrations elicit intense fear and provide a foundation for dissecting the bases of anxiety and panic disorders.
Assuntos
Acidose/metabolismo , Tonsila do Cerebelo/metabolismo , Transtornos de Ansiedade/metabolismo , Dióxido de Carbono/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Bicarbonatos/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pletismografia , Canais de Sódio/genética , Canais de Sódio/metabolismoRESUMO
Primary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS). Here, we demonstrate that BBS mice have significant impairments in context fear conditioning, a form of associative learning. Moreover, we show that postnatal deletion of BBS gene function, as well as congenital deletion, specifically in the forebrain, impairs context fear conditioning. Analyses indicated that these behavioral impairments are not the result of impaired hippocampal long-term potentiation. However, our results indicate that these behavioral impairments are the result of impaired hippocampal neurogenesis. Two-week treatment with lithium chloride partially restores the proliferation of hippocampal neurons which leads to a rescue of context fear conditioning. Overall, our results identify a novel role of cilia genes in hippocampal neurogenesis and long-term context fear conditioning.
Assuntos
Síndrome de Bardet-Biedl/genética , Medo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Animais , Síndrome de Bardet-Biedl/tratamento farmacológico , Síndrome de Bardet-Biedl/patologia , Proliferação de Células/efeitos dos fármacos , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Modelos Animais de Doenças , Medo/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Lítio/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Neurogênese/genética , Neurônios/patologiaRESUMO
Posterior fossa arachnoid cysts (PFACs) are rare congenital abnormalities observed in 0.3 to 1.7% of the population and are traditionally thought to be benign. While conducting a neuroimaging study investigating cerebellar structure in bipolar disorder, we observed a higher incidence of PFACs in bipolar patients (5 of 75; 6.6%) compared to the neuronormative control group (1 of 54; 1.8%). In this report, we detail the cases of the five patients with bipolar disorder who presented with PFACs. Additionally, we compare neuropsychiatric measures and cerebellar volumes of these patients to neuronormative controls and bipolar controls (those with bipolar disorder without neuroanatomical abnormalities). Our findings suggest that patients with bipolar disorder who also present with PFACs may have a milder symptom constellation relative to patients with bipolar disorder and no neuroanatomical abnormalities. Furthermore, our observations align with prior literature suggesting an association between PFACs and psychiatric symptoms that warrants further study. While acknowledging sample size limitations, our primary aim in the present work is to highlight a connection between PFACs and BD-associated symptoms and encourage further study of cerebellar abnormalities in psychiatry.
Assuntos
Cistos Aracnóideos , Transtorno Bipolar , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Cerebelo/anormalidades , Fossa Craniana PosteriorRESUMO
RATIONALE: Precise regulation of cerebral blood flow is critical for normal brain function. Insufficient cerebral blood flow contributes to brain dysfunction and neurodegeneration. Carbon dioxide (CO2), via effects on local acidosis, is one of the most potent regulators of cerebral blood flow. Although a role for nitric oxide in intermediate signaling has been implicated, mechanisms that initiate CO2-induced vasodilation remain unclear. OBJECTIVE: Acid-sensing ion channel-1A (ASIC1A) is a proton-gated cation channel that is activated by extracellular acidosis. Based on work that implicated ASIC1A in the amygdala and bed nucleus of the stria terminalis in CO2-evoked and acid-evoked behaviors, we hypothesized that ASIC1A might also mediate microvascular responses to CO2. METHODS AND RESULTS: To test this hypothesis, we genetically and pharmacologically manipulated ASIC1A and assessed effects on CO2-induced dilation of cerebral arterioles in vivo. Effects of inhalation of 5% or 10% CO2 on arteriolar diameter were greatly attenuated in mice with global deficiency in ASIC1A (Asic1a-/-) or by local treatment with the ASIC inhibitor, psalmotoxin. Vasodilator effects of acetylcholine, which acts via endothelial nitric oxide synthase were unaffected, suggesting a nonvascular source of nitric oxide may be key for CO2 responses. Thus, we tested whether neurons may be the cell type through which ASIC1A influences microvessels. Using mice in which Asic1a was specifically disrupted in neurons, we found effects of CO2 on arteriolar diameter were also attenuated. CONCLUSIONS: Together, these data are consistent with a model wherein activation of ASIC1A, particularly in neurons, is critical for CO2-induced nitric oxide production and vasodilation. With these findings, ASIC1A emerges as major regulator of microvascular tone.
Assuntos
Canais Iônicos Sensíveis a Ácido/deficiência , Circulação Cerebrovascular/fisiologia , Hipercapnia/metabolismo , Vasodilatação/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Dióxido de Carbono/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipercapnia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Vasodilatação/efeitos dos fármacosRESUMO
OBJECTIVE: A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN: We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS: Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION: Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.
Assuntos
Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Optogenética , Fotofobia/etiologia , Núcleos Posteriores do Tálamo , Animais , Comportamento Animal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotofobia/induzido quimicamente , Núcleos Posteriores do Tálamo/efeitos dos fármacosRESUMO
OBJECTIVE: The pathological cascades associated with the development of Alzheimer's disease (AD) have a common element: acidosis. T1rho MRI is a pH-sensitive measure, with higher values associated with greater neuropathological burden. The authors investigated the relationship between T1rho imaging and AD-associated pathologies as determined by available diagnostic imaging techniques. METHODS: Twenty-seven participants (men, N=13, women, N=14; ages 55-90) across the cognitive spectrum (healthy control subjects [HCs] with normal cognition, N=17; participants with mild cognitive impairment [MCI], N=7; participants with mild AD, N=3) underwent neuropsychological testing, MRI (T1-weighted and T1rho [spin-lattice relaxation time in the rotating frame]), and positron emission tomography imaging ([11C]Pittsburg compound B for amyloid burden [N=26] and [18F]fluorodeoxyglucose for cerebral glucose metabolism [N=12]). The relationships between global T1rho values and neuropsychological, demographic, and imaging measures were explored. RESULTS: Global mean and median T1rho were positively associated with age. After controlling for age, higher global T1rho was associated with poorer cognitive function, poorer memory function (immediate and delayed memory scores), higher amyloid burden, and more abnormal cerebral glucose metabolism. Regional T1rho values, when controlling for age, significantly differed between HCs and participants with MCI or AD in select frontal, cingulate, and parietal regions. CONCLUSIONS: Higher T1rho values were associated with greater cognitive impairment and pathological burden. T1rho, a biomarker that varies according to a feature common to each cascade rather than one that is unique to a particular pathology, has the potential to serve as a metric of neuropathology, theoretically providing a measure for assessing pathological status and for monitoring the neurodegeneration trajectory.
Assuntos
Envelhecimento , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva , Glucose/metabolismo , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Tomografia por Emissão de Pósitrons/normas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Compostos de Anilina , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , TiazóisRESUMO
Acid-sensing ion channels (ASICs) are abundantly expressed in the nucleus accumbens core (NAcore), a region of the mesolimbocortical system that has an established role in regulating drug-seeking behavior. Previous work shows that a single dose of cocaine reduced the AMPA-to-NMDA ratio in Asic1a-/- mice, an effect observed after withdrawal in wild-type mice, whereas ASIC1A overexpression in the NAcore of rats decreases cocaine self-administration. However, whether ASIC1A overexpression in the NAcore alters measures of drug-seeking behavior after the self-administration period is unknown. To examine this issue, the ASIC1A subunit was overexpressed in male Sprague-Dawley rats by injecting them with adeno-associated virus, targeted at the NAcore, after completion of 2 weeks of cocaine or food self-administration. After 21 days of homecage abstinence, rats underwent a cue-/context-driven drug/food-seeking test, followed by extinction training and then drug/food-primed, cued, and cued + drug/food-primed reinstatement tests. The results indicate that ASIC1A overexpression in the NAcore enhanced cue-/context-driven cocaine seeking, cocaine-primed reinstatement, and cued + cocaine-primed reinstatement but had no effect on food-seeking behavior, indicating a selective effect for ASIC1A in the processes underlying extinction and cocaine-seeking behavior.
Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Comportamento Animal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Expressão Gênica/genética , Núcleo Accumbens/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/farmacologia , Masculino , Núcleo Accumbens/fisiopatologia , Ratos , Ratos Sprague-DawleyRESUMO
Microtubule-associated protein tau associates with Src family tyrosine kinase Fyn and is tyrosine phosphorylated by Fyn. The presence of tyrosine phosphorylated tau in AD and the involvement of Fyn in AD has drawn attention to the tau-Fyn complex. In this study, a tau-Fyn double knockout (DKO) mouse was generated to investigate the role of the complex. DKO mice resembled Fyn KO in novel object recognition and contextual fear conditioning tasks and resembled tau KO mice in the pole test and protection from pentylenetetrazole-induced seizures. In glutamate-induced Ca2+ response, Fyn KO was decreased relative to WT and DKO had a greater reduction relative to Fyn KO, suggesting that tau may have a Fyn-independent role. Since tau KO resembled WT in its Ca2+ response, we investigated whether microtubule-associated protein 2 (MAP2) served to compensate for tau, since the MAP2 level was increased in tau KO but decreased in DKO mice. We found that like tau, MAP2 increased Fyn activity. Moreover, tau KO neurons had increased density of dendritic MAP2-Fyn complexes relative to WT neurons. Therefore, we hypothesize that in the tau KO, the absence of tau would be compensated by MAP2, especially in the dendrites, where tau-Fyn complexes are of critical importance. In the DKO, decreased levels of MAP2 made compensation more difficult, thus revealing the effect of tau in the Ca2+ response.
Assuntos
Cálcio/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Convulsões/metabolismo , Proteínas tau/metabolismo , Animais , Comportamento Animal , Feminino , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fyn/genética , Convulsões/induzido quimicamente , Proteínas tau/genéticaRESUMO
The infralimbic cortex (IL) mediates extinction learning and the active suppression of cocaine-seeking behavior. However, the precise temporal relationship among IL activity, lever pressing, and extinction learning is unclear. To address this issue, we used activity-guided optogenetics in male Sprague Dawley rats to silence IL pyramidal neurons optically for 20 s immediately after unreinforced lever presses during early extinction training after cocaine self-administration. Optical inhibition of the IL increased active lever pressing during shortened extinction sessions, but did not alter the retention of the extinction learning as assessed in ensuing extinction sessions with no optical inhibition. During subsequent cued reinstatement sessions, rats that had previously received optical inhibition during the extinction sessions showed increased cocaine-seeking behavior. These findings appeared to be specific to inhibition during the post-lever press period because IL inhibition given in a noncontingent, pseudorandom manner during extinction sessions did not produce the same effects. Illumination alone (i.e., with no opsin expression) and food-seeking control experiments also failed to produce the same effects. In another experiment, IL inhibition after lever presses during cued reinstatement sessions increased cocaine seeking during those sessions. Finally, inhibition of the prelimbic cortex immediately after unreinforced lever presses during shortened extinction sessions decreased lever pressing during these sessions, but had no effect on subsequent reinstatement. These results indicate that IL activity immediately after unreinforced lever presses is necessary for normal extinction of cocaine seeking, suggesting that critical encoding of the new contingencies between a lever press and a cocaine reward occurs during that period.SIGNIFICANCE STATEMENT The infralimbic cortex (IL) contributes to the extinction of cocaine-seeking behavior, but the precise relationship among IL activity, lever pressing during extinction, and extinction learning has not been elucidated using traditional methods. Using a closed-loop optogenetic approach, we found that selective inhibition of the IL immediately after unreinforced lever pressing impaired within-session extinction learning and promoted the subsequent cued reinstatement of cocaine seeking. These studies suggest that IL activity immediately after the instrumental response during extinction learning of cocaine seeking encodes information required for such learning and that altering such activity produces long-lasting changes in subsequent measures of cocaine craving/relapse.
Assuntos
Transtornos Relacionados ao Uso de Cocaína/psicologia , Condicionamento Operante , Extinção Psicológica , Sistema Límbico , Células Piramidais , Animais , Sinais (Psicologia) , Comportamento Alimentar , Alimentos , Sistema Límbico/citologia , Masculino , Optogenética , Ratos , Ratos Sprague-Dawley , Recidiva , AutoadministraçãoRESUMO
Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.
Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Transtornos Mentais/metabolismo , Doenças do Sistema Nervoso/metabolismo , Dor/metabolismo , Animais , Sistema Nervoso Central/patologia , Humanos , Transtornos Mentais/fisiopatologia , Neurônios/fisiologia , Dor/fisiopatologiaRESUMO
OBJECTIVES: Quantitative mapping of T1 relaxation in the rotating frame (T1ρ) is a magnetic resonance imaging technique sensitive to pH and other cellular and microstructural factors, and is a potentially valuable tool for identifying brain alterations in bipolar disorder. Recently, this technique identified differences in the cerebellum and cerebral white matter of euthymic patients vs healthy controls that were consistent with reduced pH in these regions, suggesting an underlying metabolic abnormality. The current study built upon this prior work to investigate brain T1ρ differences across euthymic, depressed, and manic mood states of bipolar disorder. METHODS: Forty participants with bipolar I disorder and 29 healthy control participants matched for age and gender were enrolled. Participants with bipolar disorder were imaged in one or more mood states, yielding 27, 12, and 13 imaging sessions in euthymic, depressed, and manic mood states, respectively. Three-dimensional, whole-brain anatomical images and T1ρ maps were acquired for all participants, enabling voxel-wise evaluation of T1ρ differences between bipolar mood state and healthy control groups. RESULTS: All three mood state groups had increased T1ρ relaxation times in the cerebellum compared to the healthy control group. Additionally, the depressed and manic groups had reduced T1ρ relaxation times in and around the basal ganglia compared to the control and euthymic groups. CONCLUSIONS: The study implicated the cerebellum and basal ganglia in the pathophysiology of bipolar disorder and its mood states, the roles of which are relatively unexplored. These findings motivate further investigation of the underlying cause of the abnormalities, and the potential role of altered metabolic activity in these regions.
Assuntos
Afeto/fisiologia , Gânglios da Base , Transtorno Bipolar , Cerebelo , Adulto , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/metabolismo , Mapeamento Encefálico/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Correlação de Dados , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Projetos de PesquisaRESUMO
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.
Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Tonsila do Cerebelo/fisiologia , Plasticidade Neuronal , Neurotransmissores/metabolismo , Prótons , Sinapses/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/química , Acidose , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Eletrodos , Potenciais Pós-Sinápticos Excitadores , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Aprendizagem , Potenciação de Longa Duração , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Peptídeos/química , Venenos de Aranha/químicaRESUMO
Sudden unexpected death in epilepsy (SUDEP) is increasingly recognized as a common and devastating problem. Because impaired breathing is thought to play a critical role in these deaths, we sought to identify forebrain sites underlying seizure-evoked hypoventilation in humans. We took advantage of an extraordinary clinical opportunity to study a research participant with medically intractable epilepsy who had extensive bilateral frontotemporal electrode coverage while breathing was monitored during seizures recorded by intracranial electrodes and mapped by high-resolution brain imaging. We found that central apnea and O2 desaturation occurred when seizures spread to the amygdala. In the same patient, localized electrical stimulation of the amygdala reproduced the apnea and O2 desaturation. Similar effects of amygdala stimulation were observed in two additional subjects, including one without a seizure disorder. The participants were completely unaware of the apnea evoked by stimulation and expressed no dyspnea, despite being awake and vigilant. In contrast, voluntary breath holding of similar duration caused severe dyspnea. These findings suggest a functional connection between the amygdala and medullary respiratory network in humans. Moreover, they suggest that seizure spread to the amygdala may cause loss of spontaneous breathing of which patients are unaware, and thus has potential to contribute to SUDEP. SIGNIFICANCE STATEMENT: Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in patients with chronic refractory epilepsy. Impaired breathing during and after seizures is common and suspected to play a role in SUDEP. Understanding the cause of this peri-ictal hypoventilation may lead to preventative strategies. In epilepsy patients, we found that seizure invasion of the amygdala co-occurred with apnea and oxygen desaturation, and electrical stimulation of the amygdala reproduced these respiratory findings. Strikingly, the subjects were unaware of the apnea. These findings indicate a functional connection between the amygdala and brainstem respiratory network in humans and suggest that amygdala seizures may cause loss of spontaneous breathing of which patients are unaware-a combination that could be deadly.
Assuntos
Tonsila do Cerebelo/fisiologia , Apneia/complicações , Epilepsia/complicações , Epilepsia/patologia , Oxigênio/metabolismo , Centro Respiratório/patologia , Análise de Variância , Mapeamento Encefálico , Estimulação Elétrica , Eletroencefalografia , Potenciais Evocados , Lobo Frontal/fisiologia , Lobo Frontal/cirurgia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal/fisiologia , Lobo Temporal/cirurgiaRESUMO
Carbon dioxide (CO2) inhalation lowers brain pH and induces anxiety, fear, and panic responses in humans. In mice, CO2 produces freezing and avoidance behavior that has been suggested to depend on the amygdala. However, a recent study in humans with bilateral amygdala lesions revealed that CO2 can trigger fear and panic even in the absence of amygdalae, suggesting the importance of extra-amygdalar brain structures. Because the bed nucleus of the stria terminalis (BNST) contributes to fear- and anxiety-related behaviors and expresses acid-sensing ion channel-1A (ASIC1A), we hypothesized that the BNST plays an important role in CO2-evoked fear-related behaviors in mice. We found that BNST lesions decreased both CO2-evoked freezing and CO2-conditioned place avoidance. In addition, we found that CO2 inhalation caused BNST acidosis and that acidosis was sufficient to depolarize BNST neurons and induce freezing behavior; both responses depended on ASIC1A. Finally, disrupting Asic1a specifically in the BNST reduced CO2-evoked freezing, whereas virus-vector-mediated expression of ASIC1A in the BNST of Asic1a(-/-) and Asic1a(+/+) mice increased CO2-evoked freezing. Together, these findings identify the BNST as an extra-amygdalar fear circuit structure important in CO2-evoked fear-related behavior.
Assuntos
Acidose/complicações , Ansiedade/etiologia , Dióxido de Carbono/toxicidade , Núcleos Septais/fisiologia , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/genética , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Eletrólise , Reação de Congelamento Cataléptica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Pletismografia , Núcleos Septais/citologia , Núcleos Septais/lesõesRESUMO
Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents.
Assuntos
Adenilil Ciclases/metabolismo , Ansiedade/fisiopatologia , Depressão/fisiopatologia , Proteínas RGS/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Animais Recém-Nascidos , Ansiedade/genética , Ansiedade/prevenção & controle , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Depressão/genética , Depressão/prevenção & controle , Feminino , Fluvoxamina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Proteínas RGS/deficiência , Proteínas RGS/genética , Serotonina/metabolismo , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T(1) relaxation in the rotating frame (T(1)ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T(1)ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive (31)P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T(1)ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T(1)ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms.
Assuntos
Bicarbonatos/metabolismo , Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Acidose/diagnóstico por imagem , Acidose/metabolismo , Adulto , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/normas , Soluções Tampão , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Hiperventilação/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Oxiemoglobinas/metabolismo , Imagens de Fantasmas , Isótopos de Fósforo , Cintilografia , Reprodutibilidade dos Testes , Ovinos , Adulto JovemRESUMO
Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a (-/-) knockout). Our results showed that 1) ASIC1a (-/-) female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.
Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/genética , Animais , Comportamento Animal , Estimulação Elétrica , Potencial Evocado Motor , Feminino , Força da Mão , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Placa Motora/metabolismo , Contração Muscular , Fadiga Muscular , Terminações Pré-Sinápticas/metabolismo , Fatores Sexuais , Fatores de TempoRESUMO
Individuals with bipolar disorder are at increased risk for suicide, and this can be influenced by a range of biological, clinical, and environmental risk factors. Biological components associated with suicide include DNA modifications that lead to changes in gene expression. Common genetic variation and DNA methylation changes are some of the most frequent types of DNA findings associated with an increased risk for suicidal behavior. Importantly, the interplay between genetic predisposition and DNA methylation patterns is becoming more prevalent in genetic studies. We hypothesized that DNA methylation patterns in specific loci already genetically associated with suicide would be altered in individuals with bipolar disorder and a history of suicide attempt. To test this hypothesis, we searched the literature to identify common genetic variants (N=34) previously associated with suicidal thoughts and behaviors in individuals with bipolar disorder. We then created a customized sequencing panel that covered our chosen genomic loci. We profiled DNA methylation patterns from blood samples collected from bipolar disorder participants with suicidal behavior (N=55) and without suicidal behavior (N=51). We identified seven differentially methylated CpG sites and five differentially methylated regions between the two groups. Additionally, we found that DNA methylation changes in MIF and CACNA1C were associated with lethality or number of suicide attempts. Finally, we identified three meQTLs in SIRT1 , IMPA2 , and INPP1 . This study illustrates that DNA methylation is altered in individuals with bipolar disorder and a history of suicide attempts in regions known to harbor suicide-related variants.
RESUMO
Background: Bipolar disorder is a debilitating mood disorder associated with a high risk of suicide and characterized by immune dysregulation. In this study, we used a multi-faceted approach to better distinguish the pattern of dysregulation of immune profiles in individuals with BD. Methods: We analyzed peripheral blood mononuclear cells (bipolar disorder N=39, control N=30), serum cytokines (bipolar disorder N=86, control N=58), whole blood RNA (bipolar disorder N=25, control N=25), and whole blood DNA (bipolar disorder N=104, control N=66) to identify immune-related differences in participants diagnosed with bipolar disorder compared to controls. Results: Flow cytometry revealed a higher proportion of monocytes in participants with bipolar disorder together with a lower proportion of T helper cells. Additionally, the levels of 18 cytokines were significantly elevated, while two were reduced in participants with bipolar disorder. Most of the cytokines altered in individuals with bipolar disorder were proinflammatory. Forty-nine genes were differentially expressed in our bipolar disorder cohort and further analyses uncovered several immune-related pathways altered in these individuals. Genetic analysis indicated variants associated with inflammatory bowel disease also influences bipolar disorder risk. Discussion: Our findings indicate a significant immune component to bipolar disorder pathophysiology and genetic overlap with inflammatory bowel disease. This comprehensive study supports existing literature, whilst also highlighting novel immune targets altered in individuals with bipolar disorder. Specifically, multiple lines of evidence indicate differences in the peripheral representation of monocytes and T cells are hallmarks of bipolar disorder.