RESUMO
Combinatorial properties such as long-circulation and site- and cell-specific engagement need to be built into the design of advanced drug delivery systems to maximize drug payload efficacy. This work introduces a four-stranded oligonucleotide Holliday Junction (HJ) motif bearing functional moieties covalently conjugated to recombinant human albumin (rHA) to give a "plug-and-play" rHA-HJ multifunctional biomolecular assembly with extended circulation. Electrophoretic gel-shift assays show successful functionalization and purity of the individual high-performance liquid chromatography-purified modules as well as efficient assembly of the rHA-HJ construct. Inclusion of an epidermal growth factor receptor (EGFR)-targeting nanobody module facilitates specific binding to EGFR-expressing cells resulting in approximately 150-fold increased fluorescence intensity determined by flow cytometric analysis compared to assemblies absent of nanobody inclusion. A cellular recycling assay demonstrated retained albumin-neonatal Fc receptor (FcRn) binding affinity and accompanying FcRn-driven cellular recycling. This translated to a 4-fold circulatory half-life extension (2.2 and 0.55 h, for the rHA-HJ and HJ, respectively) in a double transgenic humanized FcRn/albumin mouse. This work introduces a novel biomolecular albumin-nucleic acid construct with extended circulatory half-life and programmable multifunctionality due to its modular design.
Assuntos
DNA Cruciforme , Albumina Sérica Humana , Camundongos , Animais , Recém-Nascido , Humanos , Albumina Sérica Humana/metabolismo , Camundongos Transgênicos , Receptores ErbB/metabolismo , Meia-VidaRESUMO
We analyzed the effect of modified nucleotides within gapmer antisense oligonucleotides on RNase H mediated gene silencing. Additionally, short hairpins were introduced into antisense oligonucleotides as structural motifs, and their influence on biological and physicochemical properties of pre-structured gapmers was investigated for the first time. The results indicate that two LNA residues in specified positions of the gap flanking regions are sufficient and favorable for efficient knock-down of the ß-actin gene. Furthermore, the introduction of other modified nucleotides, i. e. glycyl-amino-LNA-T, 2'-O-propagyluridine, polyamine functionalized uridine, and UNA, in specified positions, also increases the inhibition of ß-actin expression. Importantly, the presence of hairpins within the gapmers improves their silencing properties.
Assuntos
Actinas , Oligonucleotídeos Antissenso , Expressão Gênica , Nucleotídeos , Oligonucleotídeos Antissenso/química , Ribonuclease H/genética , Ribonuclease H/metabolismoRESUMO
Albumin-nucleic acid biomolecular drug designs offer modular multifunctionalization and extended circulatory half-life. However, stability issues associated with conventional DNA nucleotides and maleimide bioconjugation chemistries limit the clinical potential. This work aims to improve the stability of this thiol conjugation and nucleic acid assembly by employing a fast-hydrolyzing monobromomaleimide (MBM) linker and nuclease-resistant nucleotide analogues, respectively. The biomolecular constructs were formed by site-selective conjugation of a 12-mer oligonucleotide to cysteine 34 (Cys34) of recombinant human albumin (rHA), followed by annealing of functionalized complementary strands bearing either a fluorophore or the cytotoxic drug monomethyl auristatin E (MMAE). Formation of conjugates and assemblies was confirmed by gel shift analysis and mass spectrometry, followed by investigation of serum stability, neonatal Fc receptor (FcRn)-mediated cellular recycling, and cancer cell killing. The MBM linker afforded rapid conjugation to rHA and remained stable during hydrolysis. The albumin-nucleic acid biomolecular assembly composed of stabilized oligonucleotides exhibited high serum stability and retained FcRn engagement mediating FcRn-mediated cellular recycling. The MMAE-containing assembly exhibited cytotoxicity in the human MIA PaCa-2 pancreatic cancer cell line with an IC50 of 342 nM, triggered by drug release from breakdown of an acid-labile linker. In summary, this work presents rHA-nucleic acid module-based assemblies with improved stability and retained module functionality that further promotes the drug delivery potential of this biomolecular platform.
Assuntos
Desenho de Fármacos , Ácidos Nucleicos , Compostos de Sulfidrila , Albuminas , Humanos , Oligonucleotídeos , Albumina Sérica Humana/metabolismoRESUMO
The introduction of non-bridging phosphorothioate (PS) linkages in oligonucleotides has been instrumental for the development of RNA therapeutics and antisense oligonucleotides. This modification offers significantly increased metabolic stability as well as improved pharmacokinetic properties. However, due to the chiral nature of the phosphorothioate, every PS group doubles the amount of possible stereoisomers. Thus PS oligonucleotides are generally obtained as an inseparable mixture of a multitude of diastereoisomeric compounds. Herein, we describe the introduction of non-chiral 3' thiophosphate linkages into antisense oligonucleotides and report their in vitro as well as in vivo activity. The obtained results are carefully investigated for the individual parameters contributing to antisense activity of 3' and 5' thiophosphate modified oligonucleotides (target binding, RNase H recruitment, nuclease stability). We conclude that nuclease stability is the major challenge for this approach. These results highlight the importance of selecting meaningful in vitro experiments particularly when examining hitherto unexplored chemical modifications.
Assuntos
Apolipoproteína B-100/genética , Oligonucleotídeos/genética , Fosfatos/química , Oligonucleotídeos Fosforotioatos/genética , RNA Longo não Codificante/genética , Animais , Apolipoproteína B-100/antagonistas & inibidores , Apolipoproteína B-100/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Rim/citologia , Rim/metabolismo , Fígado/citologia , Fígado/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Fosfatos/metabolismo , Oligonucleotídeos Fosforotioatos/síntese química , Oligonucleotídeos Fosforotioatos/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , EstereoisomerismoRESUMO
Whereas locked nucleic acid (LNA) has been extensively used to control gene expression, it has never been exploited to control Candida virulence genes. Thus, the main goal of this work was to compare the efficacy of five different LNA-based antisense oligonucleotides (ASO) with respect to the ability to control EFG1 gene expression, to modulate filamentation and to reduce C. albicans virulence. In vitro, all LNA-ASOs were able to significantly reduce C. albicans filamentation and to control EFG1 gene expression. Using the in vivo Galleria mellonella model, important differences among the five LNA-ASOs were revealed in terms of C. albicans virulence reduction. The inclusion of PS-linkage and palmitoyl-2'-amino-LNA chemical modification in these five LNA gapmers proved to be the most promising combination, increasing the survival of G. mellonella by 40%. Our work confirms that LNA-ASOs are useful tools for research and therapeutic development in the candidiasis field.
Assuntos
Candida albicans , Candidíase , Candida albicans/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologiaRESUMO
Attachment of cationic moieties to oligonucleotides (ONs) promises not only to increase the binding affinity of antisense ONs by reducing charge repulsion between the two negatively charged strands of a duplex, but also to augment their in vivo stability against nucleases. In this study, polyamine functionality was introduced into ONs by means of 2'-amino-LNA scaffolds. The resulting ONs exhibited efficient binding towards ssDNA, ssRNA and dsDNA targets, and the 2'-amino-LNA analogue carrying a triaminated linker showed the most pronounced duplex- and triplex-stabilizing effect. Molecular modelling revealed that favourable conformational and electrostatic effects led to salt-bridge formation between positively charged polyamine moieties and the Watson-Hoogsteen groove of the dsDNA targets, resulting in the observed triplex stabilization. All the investigated monomers showed increased resistance against 3'-nucleolytic digestion relative to the non-functionalized controls.
Assuntos
Oligonucleotídeos , Poliaminas , DNA/química , DNA de Cadeia Simples/química , Oligonucleotídeos/químicaRESUMO
Antisense oligonucleotides (ASOs) have the ability of binding to endogenous nucleic acid targets, thereby inhibiting the gene expression. Although ASOs have great potential in the treatment of many diseases, the search for favorable toxicity profiles and distribution has been challenging and consequently impeded the widespread use of ASOs as conventional medicine. One strategy that has been employed to optimize the delivery profile of ASOs, is the functionalization of ASOs with cationic amine groups, either by direct conjugation onto the sugar, nucleobase or internucleotide linkage. The introduction of these positively charged groups has improved properties like nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has been separated into three sections, nucleobase, sugar and backbone modifications, highlighting what impact the cationic amine groups have on the ONs/ASOs physiochemical and biological properties. Finally, a concluding section has been added, summarizing the important knowledge from the three chapters, and examining the future design for ASOs.
RESUMO
Off-target effects remain a significant challenge in the therapeutic use of gapmer antisense oligonucleotides (AONs). Over the years various modifications have been synthesized and incorporated into AONs, however, precise control of RNaseâ H-induced cleavage and target sequence selectivity has yet to be realized. Herein, the synthesis of the uracil and cytosine derivatives of a novel class of 2'-deoxy-2'-fluoro-3'-C-hydroxymethyl-ß-d-lyxo-configured nucleotides has been accomplished and the target molecules have been incorporated into AONs. Experiments on exonuclease degradation showed improved nucleolytic stability relative to the unmodified control. Upon the introduction of one or two of the novel 2'-fluoro-3'-C-hydroxymethyl nucleotides as modifications in the gap region of a gapmer AON was associated with efficient RNaseâ H-mediated cleavage of the RNA strand of the corresponding AON:RNA duplex. Notably, a tailored single cleavage event could be engineered depending on the positioning of a single modification. The effect of single mismatched base pairs was scanned along the full gap region demonstrating that the modification enables a remarkable specificity of RNaseâ H cleavage. A cell-based model system was used to demonstrate the potential of gapmer AONs containing the novel modification to mediate gene silencing.
Assuntos
Inativação Gênica , Nucleotídeos/química , Oligonucleotídeos Antissenso/química , Ribonuclease H/metabolismo , Sequência de Bases , Estabilidade Enzimática , Células HeLa , Humanos , Concentração Inibidora 50 , Desnaturação de Ácido Nucleico , Nucleotídeos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA/química , RNA/metabolismo , Temperatura , TransfecçãoRESUMO
DNA nanostructures have been designed and used in many different applications. However, the use of nucleic acid scaffolds to promote the self-assembly of artificial protein mimics is only starting to emerge. Herein five coiled-coil peptide structures were templated by the hybridization of a d-DNA triplex or its mirror-image counterpart, an l-DNA triplex. The self-assembly of the desired trimeric structures in solution was confirmed by gel electrophoresis and small-angle X-ray scattering, and the stabilizing synergy between the two domains was found to be chirality-independent but orientation-dependent. This is the first example of using a nucleic acid scaffold of l-DNA to template the formation of artificial protein mimics. The results may advance the emerging POC-based nanotechnology field by adding two extra dimensions, that is, chirality and polarity, to provide innovative molecular tools for rational design and bottom-up construction of artificial protein mimics, programmable materials and responsive nanodevices.
Assuntos
DNA/química , Nanotecnologia/métodos , Modelos Moleculares , Nanoestruturas/química , Nanotecnologia/instrumentação , Hibridização de Ácido Nucleico , Peptídeos/química , Domínios ProteicosRESUMO
Synthesis of the novel thiophenyl carbazole phosphoramidite DNA building block 5 was accomplished in four steps using a Suzuki-Miyaura cross-coupling reaction from the core carbazole and it was seamlessly accommodated into a 9-mer DNA-based oligonucleotide by incorporation at the flanking 5'-end in combination with a central insertion of an LNA-T nucleotide. The carbazole-containing oligonucleotide was combined in different duplex hybrids, which were characterized by thermal denaturation, circular dichroism and fluorescence studies. The carbazole monomer modulates the duplex stability in various ways. Thus, monomer Z increased the thermal stability of the 9-mer towards the complementary 9-mer/15-mer DNA duplex by 4.2 °C. Furthermore, indications of its intercalation into the duplex were obtained by modeling studies and robust decreases in fluorescence emission intensities upon duplex formation. In contrast, no clear intercalating tendency was corroborated for monomer Z within the DNA/RNA hybrid duplex as indicated by moderate quenching of the fluorescence and similar duplex thermal stabilities relative to the corresponding control duplex. The recognition efficiencies of the carbazole modified oligonucleotide toward single nucleotide mismatches were studied with two 15-mer model targets (DNA and RNA). For both systems, mismatches positioned at the juxtaposition of the carbazole monomer showed pronounced deceases in thermal denaturation temperature. Steady-state fluorescence emission studies of all mismatched duplexes with incorporation of Z monomer typically displayed efficient fluorescence quenching.
Assuntos
OligonucleotídeosRESUMO
Alpha-l-Locked nucleic acid (α-l-LNA) is a stereoisomeric analogue of locked nucleic acid (LNA), which possesses excellent biophysical properties and also exhibits high target binding affinity to complementary oligonucleotide sequences and resistance to nuclease degradations. Therefore, α-l-LNA nucleotides could be utilised to develop stable antisense oligonucleotides (AO), which can be truncated without compromising the integrity and efficacy of the AO. In this study, we explored the potential of α-l-LNA nucleotides-modified antisense oligonucleotides to modulate splicing by inducing Dmd exon-23 skipping in mdx mouse myoblasts in vitro. For this purpose, we have synthesised and systematically evaluated the efficacy of α-l-LNA-modified 2'-O-methyl phosphorothioate (2'-OMePS) AOs of three different sizes including 20mer, 18mer and 16mer AOs in parallel to fully-modified 2'-OMePS control AOs. Our results demonstrated that the 18mer and 16mer truncated AO variants showed slightly better exon-skipping efficacy when compared with the fully-23 modified 2'-OMePS control AOs, in addition to showing low cytotoxicity. As there was no previous report on using α-l-LNA-modified AOs in splice modulation, we firmly believe that this initial study could be beneficial to further explore and expand the scope of α-l-LNA-modified AO therapeutic molecules.
Assuntos
Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Éxons , Camundongos , Camundongos Endogâmicos mdx , Mioblastos/efeitos dos fármacos , Nucleotídeos/metabolismoRESUMO
Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease. In addition, it has been suggested that the muHTT transcript contributes to the toxicity. Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT knock-down of both mRNA and protein was successfully achieved. Diminished phosphorylation of HTT gene-associated RNA-polymerase II is demonstrated, suggestive of reduced transcription downstream the ON-targeted repeat. Different backbone chemistries were found to have a strong impact on the ON efficiency. We also successfully use different delivery vehicles as well as naked uptake of the ONs, demonstrating versatility and possibly providing insights for in vivo applications.
Assuntos
Regulação para Baixo/efeitos dos fármacos , Proteína Huntingtina/genética , Oligonucleotídeos Fosforotioatos/farmacologia , Expansão das Repetições de Trinucleotídeos/genética , Alelos , DNA/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteína Huntingtina/metabolismo , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapeamento por Restrição , Raios UltravioletaRESUMO
MYC, originally named c-myc, is an oncogene deregulated in many different forms of cancer. Translocation of the MYC gene to an immunoglobulin gene leads to an overexpression and the development of Burkitt's lymphoma (BL). Sporadic BL constitutes one subgroup where one of the translocation sites is located at the 5'-vicinity of the two major MYC promoters P1 and P2. A non-B-DNA forming sequence within this region has been reported with the ability to form an intramolecular triplex (H-DNA) or a G-quadruplex. We have examined triplex formation at this site first by using a 17 bp triplex-forming oligonucleotide (TFO) and a double strand DNA (dsDNA) target corresponding to the MYC sequence. An antiparallel purine-motif triplex was detected using electrophoretic mobility shift assay. Furthermore, we probed for H-DNA formation using the BQQ-OP based triplex-specific cleavage assay, which indicated the formation of the structure in the supercoiled plasmid containing the corresponding region of the MYC promoter. Targeting non-B-DNA structures has therapeutic potential; therefore, we investigated their influence on strand-invasion of anti-gene oligonucleotides (ON)s. We show that in vitro, non-B-DNA formation at the vicinity of the ON target site facilitates dsDNA strand-invasion of the anti-gene ONs.
Assuntos
DNA/química , Genes myc/genética , Oligonucleotídeos/química , Oligodesoxirribonucleotídeos , Plasmídeos/química , Regiões Promotoras GenéticasRESUMO
The synthesis of novel pyrazolylnucleosides 3a-e, 4a-e, 5a-e, and 6a-e are described. The structures of the regioisomers were elucidated by using extensive NMR studies. The pyrazolylnucleosides 5a-e and 6a-e were screened for anticancer activities on sixty human tumor cell lines. The compound 6e showed good activity against 39 cancer cell lines. In particular, it showed significant inhibition against the lung cancer cell line Hop-92 (GI50 9.3 µM) and breast cancer cell line HS 578T (GI50 3.0 µM).
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Pirazinas/síntese química , Pirazinas/farmacologia , Antineoplásicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Nucleosídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Pirazinas/química , Estereoisomerismo , Testes de ToxicidadeRESUMO
BACKGROUND: Gastric cancer is the third leading cause of cancer-related mortality worldwide. Recently, it has been demonstrated that gastric cancer cells display a specific miRNA expression profile, with increasing evidence of the role of miRNA-9 in this disease. miRNA-9 upregulation has been shown to influence the expression of E-cadherin-encoding gene, triggering cell motility and invasiveness. RESULTS: In this study, we designed LNA anti-miRNA oligonucleotides with a complementary sequence to miRNA-9 and tested their properties to both detect and silence the target miRNA. We could identify and visualize the in vitro uptake of low-dosing LNA-based anti-miRNA oligonucleotides without any carrier or transfection agent, as early as 2 h after the addition of the oligonucleotide sequence to the culture medium. Furthermore, we were able to assess the silencing potential of miRNA-9, using different LNA anti-miRNA oligonucleotide designs, and to observe its subsequent effect on E-cadherin expression. CONCLUSIONS: The administration of anti-miRNA sequences even at low-doses, rapidly repressed the target miRNA, and influenced the expression of E-cadherin by significantly increasing its levels.
Assuntos
Caderinas/genética , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/farmacologia , Neoplasias Gástricas/genética , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismoRESUMO
BACKGROUND: Antisense gapmer oligonucleotide drugs require delivery and biodistribution enabling technologies to increase in vivo efficacy. An attractive approach is their binding and consequent transport by the endogenous human serum albumin pool as mediated by fatty acid incorporation into the gapmer design. METHODS: The present study investigated the effect of palmitoyl modification and position on albumin-binding, cellular uptake and in vitro gene silencing of gapmers with either a phosphorothioate (PS) or phosphodiester (PO) backbone. RESULTS: Two palmitoyls positioned exclusively at the 5' end, or a single palmitoyl at both the 3' and 5' positions, showed similar binding to human serum albumin as demonstrated by a gel-shift assay. Decreased cellular uptake determined by flow cytometry (27% compared to nonpalmitoyl gapmers) was observed for palmitoylated Cy5.5 labelled gapmers. However, HER3 (human epidermal growth factor receptor 3) gene silencing was exhibited by the palmitoylated gapmers with transfection agent in PC-3 and Caco-2 cells (68% and 62%, respectively), which was comparable to nonpalmitoyl gapmers (68% and 82%, respectively). Importantly, PO gapmers with a single palmitoyl positioned at both the 3' and 5' positions showed high silencing efficiencies (68% and 66% in PC-3 and Caco-2 cells, respectively) similar to those of PS nonpalmitoylated gapmers (67% and 66% in PC-3 and Caco-2 cells, respectively) in the absence of a transfection agent. CONCLUSIONS: The present study defines phosphodiester gapmer design criteria exhibiting high gene silencing activity and albumin binding that may be utilized with potentially less in vivo toxicity that can be associated with phosphorothioate gapmer designs.
Assuntos
Albuminas/metabolismo , Inativação Gênica , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Lipoilação , Estrutura Molecular , Oligonucleotídeos Antissenso/química , Ligação Proteica , Receptor ErbB-3/genética , TransfecçãoRESUMO
Two highly specific biomolecular recognition events, nucleic acid duplex hybridization and DNA-peptide recognition in the minor groove, were coalesced in a miniature ensemble for the first time by covalently attaching a natural AT-hook peptide motif to nucleic acid duplexes via a 2'-amino-LNA scaffold. A combination of molecular dynamics simulations and ultraviolet thermal denaturation studies revealed high sequence-specific affinity of the peptide-oligonucleotide conjugates (POCs) when binding to complementary DNA strands, leveraging the bioinformation encrypted in the minor groove of DNA duplexes. The significant cooperative DNA duplex stabilization may pave the way toward further development of POCs with enhanced affinity and selectivity toward target sequences carrying peptide-binding genetic islands.
Assuntos
DNA/química , Oligonucleotídeos/química , Peptídeos/química , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Estudo de Prova de Conceito , Conformação ProteicaRESUMO
Synthesis of two novel conformationally constrained bicyclic ribonucleoside phosphoramidites bearing a 2'-C-methyl substituent has been accomplished. These phosphoramidites were used to incorporate the corresponding 2'-C-methyl nucleotides into oligonucleotides and to study their effects on duplex thermal stability. Whereas the C2'-O4'-linked LNA-type derivative induced severe destabilization of duplexes formed with complementary DNA and RNA, the C3'-O4'-linked derivative induced RNA-selective hybridization with increased affinity relative to that of the unmodified DNA-based probe.
Assuntos
Oligonucleotídeos/química , Compostos Organofosforados/síntese química , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , TermodinâmicaRESUMO
Datasets reporting microRNA expression profiles in normal and cancer cells show that miR-216b is aberrantly downregulated in pancreatic ductal adenocarcinoma (PDAC). We found that KRAS, whose mutant G12D allele drives the pathogenesis of PDAC, is a target of miR-216b. To suppress oncogenic KRAS in PDAC cells, we designed single-stranded (ss) miR-216b mimics with unlocked nucleic acid (UNA) modifications to enhance their nuclease resistance. We prepared variants of ss-miR-216b mimics with and without a 5' phosphate group. Both variants strongly suppressed oncogenic KRAS in PDAC cells and inhibited colony formation in pancreatic cancer cells. We observed that the designed ss-miR-216b mimics engaged AGO2 to promote the silencing of KRAS. We also tested a new delivery strategy based on the use of palmityl-oleyl-phosphatidylcholine (POPC) liposomes functionalized with ss-miR-216b conjugated with two palmityl chains and a lipid-modified cell penetrating peptide (TAT). These versatile nanoparticles suppressed oncogenic KRAS in PDAC cells.
Assuntos
Proteínas Argonautas/genética , Carcinoma Ductal Pancreático/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Regiões 3' não Traduzidas/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Lipídeos/química , Lipídeos/farmacologia , Lipossomos/química , Lipossomos/farmacologia , MicroRNAs/química , MicroRNAs/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Pâncreas/metabolismo , Pâncreas/patologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidoresRESUMO
Delivery technologies are required for realizing the clinical potential of molecular medicines. This work presents an alternative technology to preformulated delivery systems by harnessing the natural transport properties of serum albumin using endogenous binding of gapmer antisense oligonucleotides (ASOs)/albumin constructs. We show by an electrophoretic mobility assay that fatty acid-modified gapmer and human serum albumin (HSA) can self-assemble into constructs that offer favorable pharmacokinetics. The interaction was dependent on fatty acid type (either palmitic or myristic acid), number, and position within the gapmer ASO sequence, as well as phosphorothioate (PS) backbone modifications. Binding correlated with increased blood circulation in mice (t1/2 increased from 23 to 49 min for phosphodiester [PO] gapmer ASOs and from 28 to 66 min for PS gapmer ASOs with 2× palmitic acid modification). Furthermore, a shift toward a broader biodistribution was detected for PS compared with PO gapmer ASOs. Inclusion of 2× palmitoyl to the ASOs shifted the biodistribution to resemble that of natural albumin. This work, therefore, presents a novel strategy based on the proposed endogenous assembly of gapmer ASOs/albumin constructs for increased circulatory half-life and modulation of the biodistribution of gapmer ASOs that offers tunable pharmacokinetics based on the gapmer modification design.