Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113853, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421875

RESUMO

Actin cytoskeleton remodeling sustains the ability of cytotoxic T cells to search for target cells and eliminate them. We here investigated the relationship between energetic status, actin remodeling, and functional fitness in human CD8+ effector T cells. Cell spreading during migration or immunological synapse assembly mirrored cytotoxic activity. Morphological and functional fitness were boosted by interleukin-2 (IL-2), which also stimulated the transcription of glycolytic enzymes, actin isoforms, and actin-related protein (ARP)2/3 complex subunits. This molecular program scaled with F-actin content and cell spreading. Inhibiting glycolysis impaired F-actin remodeling at the lamellipodium, chemokine-driven motility, and adhesion, while mitochondrial oxidative phosphorylation blockade impacted cell elongation during confined migration. The severe morphological and functional defects of ARPC1B-deficient T cells were only partially corrected by IL-2, emphasizing ARP2/3-mediated actin polymerization as a crucial energy state integrator. The study therefore underscores the tight coordination between metabolic and actin remodeling programs to sustain the cytotoxic activity of CD8+ T cells.


Assuntos
Actinas , Linfócitos T CD8-Positivos , Humanos , Actinas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
2.
J Invest Dermatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960086

RESUMO

Exudates of non-healing wounds contain drivers of pathogenicity. We utilized >800 exudates from non-healing and healing wounds of diverse etiologies, collected by three different methods, to develop a wound-specific, cell-based functional biomarker assay. Human dermal fibroblast proliferation served as readout to a) to differentiate between healing and non-healing wounds, b) follow the healing process of individual patients, and c) assess the effects of therapeutics for chronic wounds ex vivo. We observed a strong correlation between wound chronicity and inhibitory effects of individual exudates on fibroblast proliferation, with good diagnostic sensitivity (76-90%, depending on the sample collection method). Transition of a clinically non-healing to a healing phenotype restored fibroblast proliferation and extracellular matrix formation while reducing inflammatory cytokine production. Transcriptional analysis of fibroblasts exposed to ex vivo non-healing wound exudates revealed an induction of inflammatory cytokine- and chemokine pathways and the unfolded protein response, indicating that these changes may contribute to the pathology of non-healing wounds. Testing the wound therapeutics platelet derived growth factor and silver sulfadiazine yielded responses in line with clinical experience and indicate the usefulness of the assay to search for and profile new therapeutics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa