Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 371(1): 138-150, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31324647

RESUMO

AMP-activated protein kinase (AMPK) is a multifunctional kinase that negatively regulates the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling, two signaling pathways linked to pain promotion after injury, such as surgical incision. AMPK can be activated directly using positive allosteric modulators, as well as indirectly through the upregulation of upstream kinases, such as liver kinase B1 (LKB1), which is a mechanism of action of metformin. Metformin's antihyperalgesic effects occur only in male mice, raising questions about how metformin regulates pain sensitivity. We used metformin and other structurally distinct AMPK activators narciclasine (NCLS), ZLN-024, and MK8722, to treat incision-induced mechanical hypersensitivity and hyperalgesic priming in male and female mice. Metformin was the only AMPK activator to have sex-specific effects. We also found that indirect AMPK activators metformin and NCLS were able to reduce mechanical hypersensitivity and block hyperalgesic priming, whereas direct AMPK activators ZLN-024 and MK8722 only blocked priming. Direct and indirect AMPK activators stimulated AMPK in dorsal root ganglion (DRG) neuron cultures to a similar degree; however, incision decreased phosphorylated AMPK (p-AMPK) in DRG. Because AMPK phosphorylation is required for kinase activity, we interpret our findings as evidence that indirect AMPK activators are more effective for treating pain hypersensitivity after incision because they can drive increased p-AMPK through upstream kinases like LKB1. These findings have important implications for the development of AMPK-targeting therapeutics for pain treatment. SIGNIFICANCE STATEMENT: Nonopioid treatments for postsurgical pain are needed. Our work focused on whether direct or indirect AMP-activated protein kinase (AMPK) activators would show greater efficacy for inhibiting incisional pain, and we also tested for potential sex differences. We conclude that indirect AMPK activators are likely to be more effective as potential therapeutics for postsurgical pain because they inhibit acute pain caused by incision and prevent the long-term neuronal plasticity that is involved in persistent postsurgical pain. Our work points to the natural product narciclasine, an indirect AMPK activator, as an excellent starting point for development of therapeutics.


Assuntos
Ativadores de Enzimas/farmacologia , Hiperalgesia/metabolismo , Metformina/farmacologia , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Regulação Alostérica , Alcaloides de Amaryllidaceae/farmacologia , Animais , Benzimidazóis , Células Cultivadas , Feminino , Gânglios Espinais/efeitos dos fármacos , Imidazóis/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Fenantridinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia
2.
Pharmacol Res ; 139: 1-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391353

RESUMO

Metformin is a widely prescribed drug used in the treatment of type II diabetes. While the drug has many mechanisms of action, most of these converge on AMP activated protein kinase (AMPK), which metformin activates. AMPK is a multifunctional kinase that is a negative regulator of mechanistic target of rapamycin (mTOR) and mitogen activated protein kinase (MAPK) signaling. Activation of AMPK decreases the excitability of dorsal root ganglion neurons and AMPK activators are effective in reducing chronic pain in inflammatory, post-surgical and neuropathic rodent models. We have previously shown that metformin leads to an enduring resolution of neuropathic pain in the spared nerve injury (SNI) model in male mice and rats. The precise mechanism underlying this long-lasting effect is not known. We conducted experiments to investigate the effects of metformin on SNI-induced microglial activation, a process implicated in the maintenance of neuropathic pain that has recently been shown to be sexually dimorphic. We find that metformin is effective at inhibiting development of neuropathic pain when treatment is given around the time of injury and that metformin is likewise effective at reversing neuropathic mechanical hypersensitivity when treatment is initiation weeks after injury. This effect is linked to decreased Iba-1 staining in the dorsal horn, a marker of microglial activation. Importantly, these positive behavioral and microglia effects of metformin were only observed in male mice. We conclude that the neuropathic pain modifying effects of metformin are sex-specific supporting a differential role for microglial activation in male and female mice.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Microglia/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Caracteres Sexuais , Medula Espinal/efeitos dos fármacos , Animais , Temperatura Baixa , Feminino , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos Endogâmicos ICR , Microglia/fisiologia , Estimulação Física , Medula Espinal/fisiologia
3.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464065

RESUMO

Non-syndromic orofacial clefts (NSOFCs) are common birth defects with a complex etiology. While over 60 common risk loci have been identified, they explain only a small proportion of the heritability for NSOFC. Rare variants have been implicated in the missing heritability. Thus, our study aimed to identify genes enriched with nonsynonymous rare coding variants associated with NSOFCs. Our sample included 814 non-syndromic cleft lip with or without palate (NSCL/P), 205 non-syndromic cleft palate only (NSCPO), and 2150 unrelated control children from Nigeria, Ghana, and Ethiopia. We conducted a gene-based analysis separately for each phenotype using three rare-variants collapsing models: (1) protein-altering (PA), (2) missense variants only (MO); and (3) loss of function variants only (LOFO). Subsequently, we utilized relevant transcriptomics data to evaluate associated gene expression and examined their mutation constraint using the gnomeAD database. In total, 13 genes showed suggestive associations (p = E-04). Among them, eight genes (ABCB1, ALKBH8, CENPF, CSAD, EXPH5, PDZD8, SLC16A9, and TTC28) were consistently expressed in relevant mouse and human craniofacial tissues during the formation of the face, and three genes (ABCB1, TTC28, and PDZD8) showed statistically significant mutation constraint. These findings underscore the role of rare variants in identifying candidate genes for NSOFCs.

4.
Sci Rep ; 14(1): 14279, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902479

RESUMO

Non-syndromic orofacial clefts (NSOFCs) are common birth defects with a complex etiology. While over 60 common risk loci have been identified, they explain only a small proportion of the heritability for NSOFCs. Rare variants have been implicated in the missing heritability. Thus, our study aimed to identify genes enriched with nonsynonymous rare coding variants associated with NSOFCs. Our sample included 814 non-syndromic cleft lip with or without palate (NSCL/P), 205 non-syndromic cleft palate only (NSCPO), and 2150 unrelated control children from Nigeria, Ghana, and Ethiopia. We conducted a gene-based analysis separately for each phenotype using three rare-variants collapsing models: (1) protein-altering (PA), (2) missense variants only (MO); and (3) loss of function variants only (LOFO). Subsequently, we utilized relevant transcriptomics data to evaluate associated gene expression and examined their mutation constraint using the gnomeAD database. In total, 13 genes showed suggestive associations (p = E-04). Among them, eight genes (ABCB1, ALKBH8, CENPF, CSAD, EXPH5, PDZD8, SLC16A9, and TTC28) were consistently expressed in relevant mouse and human craniofacial tissues during the formation of the face, and three genes (ABCB1, TTC28, and PDZD8) showed statistically significant mutation constraint. These findings underscore the role of rare variants in identifying candidate genes for NSOFCs.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fissura Palatina/genética , Fenda Labial/genética , Feminino , Gana , Masculino , Camundongos , Predisposição Genética para Doença , Animais , Nigéria , Etiópia , População Negra/genética , Criança
5.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547071

RESUMO

To characterize the genetic basis of facial features in Latin Americans, we performed a genome-wide association study (GWAS) of more than 6000 individuals using 59 landmark-based measurements from two-dimensional profile photographs and ~9,000,000 genotyped or imputed single-nucleotide polymorphisms. We detected significant association of 32 traits with at least 1 (and up to 6) of 32 different genomic regions, more than doubling the number of robustly associated face morphology loci reported until now (from 11 to 23). These GWAS hits are strongly enriched in regulatory sequences active specifically during craniofacial development. The associated region in 1p12 includes a tract of archaic adaptive introgression, with a Denisovan haplotype common in Native Americans affecting particularly lip thickness. Among the nine previously unidentified face morphology loci we identified is the VPS13B gene region, and we show that variants in this region also affect midfacial morphology in mice.


Assuntos
Face , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte Vesicular , Animais , Face/anatomia & histologia , Estudo de Associação Genômica Ampla , Genótipo , Hispânico ou Latino/genética , Humanos , Camundongos , Fenótipo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa