Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(8): 2045-2057, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995700

RESUMO

Regulatory T cells (Treg) are highly enriched within many tumors and suppress immune responses to cancer. There is intense interest in reprogramming Tregs to contribute to antitumor immunity. OX40 and CD137 are expressed highly on Tregs, activated and memory T cells, and NK cells. In this study, using a novel bispecific antibody targeting mouse OX40 and CD137 (FS120m), we show that OX40/CD137 bispecific agonism induces potent antitumor immunity partially dependent upon IFNγ production by functionally reprogrammed Tregs. Treatment of tumor-bearing animals with OX40/CD137 bispecific agonists reprograms Tregs into both fragile Foxp3+ IFNγ+ Tregs with decreased suppressive function and lineage-instable Foxp3- IFNγ+ ex-Tregs. Treg fragility is partially driven by IFNγ signaling, whereas Treg instability is associated with reduced IL2 responsiveness upon treatment with OX40/CD137 bispecific agonists. Importantly, conditional deletion of Ifng in Foxp3+ Tregs and their progeny partially reverses the antitumor efficacy of OX40/CD137 bispecific agonist therapy, revealing that reprogramming of Tregs into IFNγ-producing cells contributes to the anti-tumor efficacy of OX40/CD137 bispecific agonists. These findings provide insights into mechanisms by which bispecific agonist therapies targeting costimulatory receptors highly expressed by Tregs potentiate antitumor immunity in mouse models. SIGNIFICANCE: The bispecific antibody FS120, an immunotherapy currently being tested in the clinic, partially functions by inducing anti-tumor activity of Tregs, which results in tumor rejection.


Assuntos
Anticorpos Biespecíficos , Interferon gama , Receptores OX40 , Linfócitos T Reguladores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Animais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Receptores OX40/agonistas , Receptores OX40/imunologia , Camundongos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Interferon gama/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Camundongos Endogâmicos C57BL , Humanos , Linhagem Celular Tumoral , Feminino
2.
Sci Immunol ; 8(90): eabo5558, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100544

RESUMO

Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.


Assuntos
Neoplasias , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Interleucina-10/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Fatores de Transcrição Forkhead/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa