RESUMO
Climate change has had a significant impact on the seasonal transition dates of Arctic tundra ecosystems, causing diverse variations between distinct land surface classes. However, the combined effect of multiple controls as well as their individual effects on these dates remains unclear at various scales and across diverse land surface classes. Here we quantified spatiotemporal variations of three seasonal transition dates (start of spring, maximum normalized difference vegetation index (NDVImax ) day, end of fall) for five dominating land surface classes in the ice-free Greenland. Using a distributed snow model, structural equation modeling, and a random forest model, based on ground observations and remote sensing data, we assessed the indirect and direct effects of climate, snow, and terrain on seasonal transition dates. We then presented new projections of likely changes in seasonal transition dates under six future climate scenarios. The coupled climate, snow cover, and terrain conditions explained up to 61% of seasonal transition dates across different land surface classes. Snow ending day played a crucial role in the start of spring and timing of NDVImax . A warmer June and a decline in wind could advance the NDVImax day. Increased precipitation and temperature during July-August are the most important for delaying the end of fall. We projected that a 1-4.5°C increase in temperature and a 5%-20% increase in precipitation would lengthen the spring-to-fall period for all five land surface classes by 2050, thus the current order of spring-to-fall lengths for the five land surface classes could undergo notable changes. Tall shrubs and fens would have a longer spring-to-fall period under the warmest and wettest scenario, suggesting a competitive advantage for these vegetation communities. This study's results illustrate controls on seasonal transition dates and portend potential changes in vegetation composition in the Arctic under climate change.
Assuntos
Ecossistema , Tundra , Groenlândia , Estações do Ano , Regiões Árticas , Neve , Mudança ClimáticaRESUMO
Increasing temperatures and winter precipitation can influence the carbon (C) exchange rates in arctic ecosystems. Feedbacks can be both positive and negative, but the net effects are unclear and expected to vary strongly across the Arctic. There is a lack of understanding of the combined effects of increased summer warming and winter precipitation on the C balance in these ecosystems. Here we assess the short-term (1-3 years) and long-term (5-8 years) effects of increased snow depth (snow fences) (on average + 70 cm) and warming (open top chambers; 1-3°C increase) and the combination in a factorial design on all key components of the daytime carbon dioxide (CO2 ) fluxes in a wide-spread heath tundra ecosystem in West Greenland. The warming treatment increased ecosystem respiration (ER) on a short- and long-term basis, while gross ecosystem photosynthesis (GEP) was only increased in the long term. Despite the difference in the timing of responses of ER and GEP to the warming treatment, the net ecosystem exchange (NEE) of CO2 was unaffected in the short term and in the long term. Although the structural equation model (SEM) indicates a direct relationship between seasonal accumulated snow depth and ER and GEP, there were no significant effects of the snow addition treatment on ER or GEP measured over the summer period. The combination of warming and snow addition turned the plots into net daytime CO2 sources during the growing season. Interestingly, despite no significant changes in air temperature during the snow-free time during the experiment, control plots as well as warming plots revealed significantly higher ER and GEP in the long term compared to the short term. This was in line with the satellite-derived time-integrated normalized difference vegetation index of the study area, suggesting that more factors than air temperature are drivers for changes in arctic tundra ecosystems.
Assuntos
Dióxido de Carbono , Ecossistema , Estações do Ano , Dióxido de Carbono/química , Temperatura , Neve , Tundra , Regiões Árticas , Solo/químicaRESUMO
Climate changes are pronounced in Arctic regions and increase the vulnerability of the Arctic coastal zone. For example, increases in melting of the Greenland Ice Sheet and reductions in sea ice and permafrost distribution are likely to alter coastal morphodynamics. The deltas of Greenland are largely unaffected by human activity, but increased freshwater runoff and sediment fluxes may increase the size of the deltas, whereas increased wave activity in ice-free periods could reduce their size, with the net impact being unclear until now. Here we show that southwestern Greenland deltas were largely stable from the 1940s to 1980s, but prograded (that is, sediment deposition extended the delta into the sea) in a warming Arctic from the 1980s to 2010s. Our results are based on the areal changes of 121 deltas since the 1940s, assessed using newly discovered aerial photographs and remotely sensed imagery. We find that delta progradation was driven by high freshwater runoff from the Greenland Ice Sheet coinciding with periods of open water. Progradation was controlled by the local initial environmental conditions (that is, accumulated air temperatures above 0 °C per year, freshwater runoff and sea ice in the 1980s) rather than by local changes in these conditions from the 1980s to 2010s at each delta. This is in contrast to a dominantly eroding trend of Arctic sedimentary coasts along the coastal plains of Alaska, Siberia and western Canada, and to the spatially variable patterns of erosion and accretion along the large deltas of the main rivers in the Arctic. Our results improve the understanding of Arctic coastal evolution in a changing climate, and reveal the impacts on coastal areas of increasing ice mass loss and the associated freshwater runoff and lengthening of open-water periods.
RESUMO
Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4 ) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4 . Here, we present results of in situ CH4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open-top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH4 -C m-2 (8.1 ± 1.2 g CO2 -eq m-2 ) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH4 -C m-2 (3.9 ± 0.6 g CO2 -eq m-2 ). These uptake rates were subsequently scaled to the entire study area of 0.15 km2 , a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4 -C m-2 (3.7 ± 1.2 g CO2 -eq m-2 ). The result was a net landscape sink of 12.71 kg CH4 -C (0.48 tonne CO2 -eq) during the growing season. A nonsignificant trend was noticed in seasonal CH4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH4 fluxes. Overall, the net landscape sink of CH4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH4 budget of the Arctic due to their potential role in counterbalancing CH4 emissions from wetlands - not the least when taking the future climatic scenarios of the Arctic into account.
Assuntos
Mudança Climática , Metano/química , Solo/química , Tundra , Regiões Árticas , Ecossistema , Groenlândia , Estações do Ano , TemperaturaRESUMO
Climate change can have positive and negative effects on the carbon pools and budgets in soil and plant fractions, but net effects are unclear and expected to vary widely within the arctic. We report responses after nine years (2012-2021) of increased snow depth (snow fences) and summer warming (open top chambers) and the combination on soil and plant carbon pools within a tundra ecosystem in West Greenland. Data included characteristics of depth-specific soil samples, including the rhizosphere soil, as well as vegetation responses of NDVI-derived traits, plant species cover and aboveground biomass, litter and roots. Furthermore, natural vegetation growth through the study period was quantified based on time-integrated NDVI Landsat 8 satellite imagery. Our results showed that summer warming resulted in a significant and positive vegetation response driven by the deciduous low shrub Betula nana (no other vascular plant species), while snow addition alone resulted in a significant negative response for Betula. A significant positive effect of summer warming was also observed for moss biomass, possibly driven increasing shade by Betula. The aboveground effects cascaded to belowground traits. The rhizosphere soil characteristics differed from those of the bulk soil regardless of treatment. Only the rhizosphere fraction showed responses to treatment, as soil organic C stock increased in near-surface and top 20 cm with summer warming. We observed no belowground effects from snow addition. The study highlights the plant species response to treatment followed by impacts on belowground C pools, mainly driven by dead fine roots via Betula nana. We conclude that the summer warming treatment and snow addition treatment separately showed opposing effects on ecosystem C pools, with lack of interactive effects between main factors in the combination treatment. Furthermore, changes in soil C are more clearly observed in the rhizosphere soil fraction, which should receive more attention in the future.
Assuntos
Mudança Climática , Estações do Ano , Neve , Solo , Tundra , Solo/química , Groenlândia , Plantas , Carbono/análise , Biomassa , Monitoramento Ambiental , Ciclo do CarbonoRESUMO
Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.
Assuntos
Neve , Solo , Humanos , Groenlândia , Regiões Árticas , Xilema/fisiologiaRESUMO
The combined effects of climate change and nutrient availability on Arctic vegetation growth are poorly understood. Archaeological sites in the Arctic could represent unique nutrient hotspots for studying the long-term effect of nutrient enrichment. In this study, we analysed a time-series of ring widths of Salix glauca L. collected at nine archaeological sites and in their natural surroundings along a climate gradient in the Nuuk fjord region, Southwest Greenland, stretching from the edge of the Greenlandic Ice Sheet in the east to the open sea in the west. We assessed the temperature-growth relationship for the last four decades distinguishing between soils with past anthropogenic nutrient enrichment (PANE) and without (controls). Along the East-West gradient, the inner fjord sites showed a stronger temperature signal compared to the outermost ones. Individuals growing in PANE soils had wider ring widths than individuals growing in the control soils and a stronger climate-growth relation, especially in the inner fjord sites. Thereby, the individuals growing on the archaeological sites seem to have benefited more from the climate warming in recent decades. Our results suggest that higher nutrient availability due to past human activities plays a role in Arctic vegetation growth and should be considered when assessing both the future impact of plants on archaeological sites and the general greening in landscapes with contrasting nutrient availability.
RESUMO
Climate change is expected to accelerate the microbial degradation of the many extraordinary well-preserved organic archaeological deposits found in the Arctic. This could potentially lead to a major loss of wooden artefacts that are still buried within the region. Here, we carry out the first large-scale investigation of wood degradation within archaeological deposits in the Arctic. This is done based on wooden samples from 11 archaeological sites that are located along a climatic gradient in Western Greenland. Our results show that Ascomycota fungi are causing extensive soft rot decay at all sites regardless of climate and local environment, but the group is diverse and many of the species were only found once. Cadophora species known to cause soft rot in polar environments were the most abundant Ascomycota found and their occurrence in native wood samples underlines that they are present locally. Basidiomycota fungi were also present at all sites. In the majority of samples, however, these aggressive and potentially very damaging wood degraders have caused limited decay so far, probably due to unfavorable growth conditions. The presence of these wood degrading fungi suggests that archaeological wooden artefacts may become further endangered if climate change leads to more favorable growth conditions.
RESUMO
Across the Arctic, microbial degradation is actively destroying irreplaceable cultural and environmental records that have been preserved within archaeological deposits for millennia. Because it is not possible to survey the many sites in this remote part of the world, new methods are urgently needed to detect and assess the potential degradation. Here, we investigate organic deposits at seven archaeological sites located along the dominating west-east climatic gradient in West Greenland. We show that, regardless of age, depositional history and environmental conditions, all organic deposits are highly vulnerable to degradation. A state-of-the-art model that simulates the effect of future climate change on degradation indicates that 30-70% of the archaeological fraction of organic carbon (OC) could disappear within the next 80 years. This range reflects the variation within the climatic gradient and the future climate scenario applied (RCP 4.5 and RCP 8.5). All archaeological deposits are expected to experience a substantial loss, but the most rapid degradation seems to occur in the continental inland areas of the region, dominated by dry and warm summers. This suggests that organic remains from the Norse Viking Age settlers are especially under threat in the coming years.
RESUMO
Climate change has irrevocable consequences for the otherwise well-preserved archaeological deposits in the Arctic. Vegetation changes are expected to impact archaeological sites, but currently the effects are poorly understood. In this article we investigate five archaeological sites and the surrounding natural areas along a climate gradient in Southwest Greenland in terms of vegetation types, above- and below-ground biomass, soil geochemistry and spectral properties. The investigations are based on data from site-sampling and optical remote sensing from an unmanned aerial vehicle (UAV) and satellites. Results show that the archaeological sites are dominated by graminoids with approximately two times more above- and below-ground biomass than the surrounding areas, where the vegetation is more heterogeneous. This difference is associated with a 2-6 times higher content of plant available phosphorus and water extractable nitrate and ammonium in the archaeological deposits compared to the surrounding soil. Furthermore, the vegetation at archaeological sites is less affected by the regional climate variations than the surrounding natural areas. This suggests that soil-vegetation interactions at archaeological sites are markedly different from the natural environment. Thus, the long-term vulnerability of buried archaeological remains cannot be assessed based on existing projections of Arctic vegetation change. Finally, the study demonstrates that vegetation within archaeological sites has distinct spectral properties, and there is a great potential for using satellite imagery for large scale vegetation monitoring of archaeological sites and for archaeological prospection in the Arctic.
Assuntos
Biota , Atividades Humanas , Plantas , Solo/química , Arqueologia , Biomassa , GroenlândiaRESUMO
Temperature changes in the Arctic have notable impacts on ecosystem structure and functioning, on soil carbon dynamics, and on the stability of permafrost, thus affecting ecosystem functions and putting man-built infrastructure at risk. Future warming in the Arctic could accelerate important feedbacks in permafrost degradation processes. Therefore it is important to map vulnerable areas most likely to be impacted by temperature changes and at higher risk of degradation, particularly near communities, to assist adaptation to climate change. Currently, these areas are poorly assessed, especially in Greenland. Here we quantify trends in satellite-derived land surface temperatures and modelled air temperatures, validated against observations, across the entire ice-free Greenland. Focus is on the past 30 years, to characterize significant changes and potentially vulnerable regions at a 1 km resolution. We show that recent temperature trends in Greenland vary significantly between seasons and regions and that data with resolutions down to single km2 are critical to map temperature changes for guidance of further local studies and decision-making. Only a fraction of the ice-free Greenland seems vulnerable due to warming when analyzing year 2001-2015, but the most pronounced changes are found in the most populated parts of Greenland. As Greenland represents important gradients of north/south coast/inland/distance to large ice sheets, the conclusions are also relevant in an upscaling to greater Arctic areas.
RESUMO
Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast Greenland to assess the seasonal response of a dwarf shrub heath, grassland, and fen, to inter-annual variation in snow-cover, soil moisture, and air and soil temperatures. A late snow melt and start of growing season is counterbalanced by a fast greenup and a tendency to higher peak greenness values. Snow water equivalents and soil moisture explained up to 77 % of growing season duration and senescence phase, highlighting that water availability is a prominent driver in the heath site, rather than temperatures. We found a significant advance in the start of spring by 10 days and in the end of fall by 11 days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity.
Assuntos
Clima , Monitorização de Parâmetros Ecológicos/métodos , Desenvolvimento Vegetal , Regiões Árticas , Pradaria , Groenlândia , Estações do Ano , Neve , Temperatura , Imagem com Lapso de TempoRESUMO
Insect outbreaks can have important consequences for tundra ecosystems. In this study, we synthesise available information on outbreaks of larvae of the noctuid moth Eurois occulta in Greenland. Based on an extensive dataset from a monitoring programme in Kobbefjord, West Greenland, we demonstrate effects of a larval outbreak in 2011 on vegetation productivity and CO2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118-143 g C m-2, corresponding to 1210-1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years by increased primary production, probably facilitated by the larval outbreak increasing nutrient turnover rates. Furthermore, we demonstrate for the first time in tundra ecosystems, the potential for using remote sensing to detect and map insect outbreak events.
Assuntos
Dióxido de Carbono/análise , Monitorização de Parâmetros Ecológicos , Herbivoria , Mariposas/fisiologia , Tundra , Animais , Dióxido de Carbono/metabolismo , Clima , Groenlândia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Fenômenos Fisiológicos VegetaisRESUMO
The objective of this paper is to characterize the spatiotemporal variations of vegetation phenology along latitudinal and altitudinal gradients in Greenland, and to examine local and regional climatic drivers. Time-series from the Moderate Resolution Imaging Spectroradiometer (MODIS) were analyzed to obtain various phenological metrics for the period 2001-2015. MODIS-derived land surface temperatures were corrected for the sampling biases caused by cloud cover. Results indicate significant differences between West and East Greenland, in terms of both observed phenology during the study period, as well as the climatic response. The date of the start of season (SOS) was significantly earlier (24 days), length of season longer (25 days), and time-integrated NDVI higher in West Greenland. The sea ice concentration during May was found to have a significant effect on the date of the SOS only in West Greenland, with the strongest linkage detected in mid-western parts of Greenland.
Assuntos
Clima , Desenvolvimento Vegetal , Estações do Ano , Regiões Árticas , Monitorização de Parâmetros Ecológicos , Geografia , Groenlândia , Camada de Gelo , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto , Temperatura , TundraRESUMO
The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action.
RESUMO
The spatial heterogeneity of vegetation greenness and potential aboveground biomass production for sheep farming has been assessed for Southwest Greenland. A Multi-Criteria Evaluation (MCE) model was set up to identify biophysical constraints on the present spatial distribution of farms and fields based on all existing sheep farms in a detailed study area. Time-integrated NDVI (TI-NDVI) from MODIS and observed temperatures (2000-2012) have been combined with a downscaled regional climate model (HIRHAM5) in order to establish a spatio-temporal model for future TI-NDVI, thus forecasting the dry biomass production available for sheep farming in steps of decades for the next 85 years. The model has been validated against observed biomass production and the present distribution of fields. Future biomass production is used to discuss the expansion of current farms and to identify new suitable areas for sheep farming. Interestingly, new suitable areas are located where sheep farms were situated during the Norse era more than 1000 years ago; areas which have been abandoned for the past 500 years. The study highlights the potential of establishing new areas for sheep farming in Arctic Greenland, where current and future climate changes are markedly amplified compared to global trends. However, for the study area the MCE model clearly indicates that the potential of expansion relies on contemporary infrastructural development.