Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 292, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110903

RESUMO

BACKGROUND: Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS: High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS: Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.


Assuntos
Cílios , Neurônios Receptores Olfatórios , Receptores Acoplados a Proteínas G , Animais , Camundongos , Cílios/metabolismo , Camundongos Knockout , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Olfato/fisiologia
2.
Infect Immun ; 91(9): e0015423, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551971

RESUMO

Streptococcus pneumoniae is a Gram-positive opportunistic pathogen that can colonize the upper respiratory tract. It is a leading cause of a wide range of infectious diseases, including community-acquired pneumonia and meningitis. Pneumococcal infections cause 1-2 million deaths per year, most of which occur in developing countries. Here, we focused on three choline-binding proteins (CBPs), i.e., PspC, PspA, and LytA. These pneumococcal proteins have different surface-exposed regions but share related choline-binding anchors. These surface-exposed pneumococcal proteins are in direct contact with host cells and have diverse functions. We explored the role of the three CBPs on adhesion and pathogenicity in a human host by performing relevant imaging and functional analyses, such as electron microscopy, confocal laser scanning microscopy, and functional quantitative assays, targeting biofilm formation and the hemolytic capacity of S. pneumoniae. In vitro biofilm formation assays and electron microscopy experiments were used to examine the ability of knockout mutant strains lacking the lytA, pspC, or pspA genes to adhere to surfaces. We found that LytA plays an important role in robust synthesis of the biofilm matrix. PspA and PspC appeared crucial for the hemolytic effects of S. pneumoniae on human red blood cells. Furthermore, all knockout mutants caused less damage to endothelial cells than wild-type bacteria, highlighting the significance of each CPB for the overall pathogenicity of S. pneumoniae. Hence, in addition to their structural function within the cell wall of S. pneumoniae, each of these three surface-exposed CBPs controls or mediates multiple steps during bacterial pathogenesis.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Colina/metabolismo , Proteínas de Bactérias/metabolismo , Infecções Pneumocócicas/microbiologia , Proteínas de Membrana/metabolismo , Eritrócitos
3.
Microsc Microanal ; 29(6): 2014-2025, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944034

RESUMO

Correlative microscopy is a powerful technique that combines the advantages of multiple imaging modalities to achieve a comprehensive understanding of investigated samples. For example, fluorescence microscopy provides unique functional contrast by imaging only specifically labeled components, especially in biological samples. However, the achievable structural information on the sample in its full complexity is limited. Here, the intrinsic label-free carbon contrast of water window soft X-ray microscopy can complement fluorescence images in a correlative approach ultimately combining nanoscale structural resolution with functional contrast. However, soft X-ray microscopes are complex and elaborate, and are usually installed on large-scale synchrotron radiation sources due to the demanding photon flux requirements. Yet, with modern high-power lasers it has become possible to generate sufficient photon flux from laser-produced plasmas, thus enabling laboratory-based setups. Here, we present a compact table-top soft X-ray microscope with an integrated epifluorescence modality for "in situ" correlative imaging. Samples remain in place when switching between modalities, ensuring identical measurement conditions and avoiding sample alteration or destruction. We demonstrate our new method by multimodal images of several exemplary samples ranging from nanoparticles to various multicolor labeled cell types. A structural resolution of down to 50 nm was reached.

4.
Mol Carcinog ; 61(3): 269-280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897815

RESUMO

Exosomes represent extracellular vesicles of endocytic origin ranging from 30 to 100 nm that are released by most of eukaryotic cells and can be found in body fluids. These vesicles in carrying DNA, RNA, microRNA (miRNA), Long noncoding RNA, proteins, and lipids serve as intercellular communicators. Due to their role in crosstalk between tumor cells and mesenchymal stroma cells, they are vital for tumor growth, progression, and anticancer drug resistance. Lung cancer is a global leading cause of cancer-related deaths with 5-year survival rates of about 7% in patients with distant metastasis. Although the implementation of targeted therapy has improved the clinical outcome of nonsmall cell lung cancer, drug resistance remains a major obstacle. Lung tumor-derived exosomes (TDEs) conveying molecular information from tumor cells to their neighbor cells or cells at distant sites of the body activate the tumor microenvironment (TME) and facilitate tumor metastasis. Exosomal miRNAs are also considered as noninvasive biomarkers for early diagnosis of lung cancer. This review summarizes the influence of lung TDEs on the TME and metastasis. Their involvement in targeted therapy resistance and potential clinical applications are discussed. Additionally, challenges encountered in the development of exosome-based therapeutic strategies are addressed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral
5.
Cell Microbiol ; 23(11): e13389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34460149

RESUMO

Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.


Assuntos
Amoeba , Candida parapsilosis , Parede Celular , Homeostase , Homicídio , Oxirredução , Proteômica
6.
Part Fibre Toxicol ; 19(1): 39, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644618

RESUMO

BACKGROUND: Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123-614 µM ZnO NP. RESULTS: In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. CONCLUSIONS: Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.


Assuntos
Nanopartículas , Óxido de Zinco , Células CACO-2 , Humanos , Intestinos , Nanopartículas/toxicidade , Zinco , Óxido de Zinco/química , Óxido de Zinco/toxicidade
7.
Appl Environ Microbiol ; 87(13): e0314420, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893117

RESUMO

Recent work with Methylorubrum extorquens AM1 identified intracellular, cytoplasmic lanthanide storage in an organism that harnesses these metals for its metabolism. Here, we describe the extracellular and intracellular accumulation of lanthanides in the Beijerinckiaceae bacterium RH AL1, a newly isolated and recently characterized methylotroph. Using ultrathin-section transmission electron microscopy (TEM), freeze fracture TEM (FFTEM), and energy-dispersive X-ray spectroscopy, we demonstrated that strain RH AL1 accumulates lanthanides extracellularly at outer membrane vesicles (OMVs) and stores them in the periplasm. High-resolution elemental analyses of biomass samples revealed that strain RH AL1 can accumulate ions of different lanthanide species, with a preference for heavier lanthanides. Its methanol oxidation machinery is supposedly adapted to light lanthanides, and their selective uptake is mediated by dedicated uptake mechanisms. Based on transcriptome sequencing (RNA-seq) analysis, these presumably include the previously characterized TonB-ABC transport system encoded by the lut cluster but potentially also a type VI secretion system. A high level of constitutive expression of genes coding for lanthanide-dependent enzymes suggested that strain RH AL1 maintains a stable transcript pool to flexibly respond to changing lanthanide availability. Genes coding for lanthanide-dependent enzymes are broadly distributed taxonomically. Our results support the hypothesis that central aspects of lanthanide-dependent metabolism partially differ between the various taxa. IMPORTANCE Although multiple pieces of evidence have been added to the puzzle of lanthanide-dependent metabolism, we are still far from understanding the physiological role of lanthanides. Given how widespread lanthanide-dependent enzymes are, only limited information is available with respect to how lanthanides are taken up and stored in an organism. Our research complements work with commonly studied model organisms and showed the localized storage of lanthanides in the periplasm. This storage occurred at comparably low concentrations. Strain RH AL1 is able to accumulate lanthanide ions extracellularly and to selectively utilize lighter lanthanides. The Beijerinckiaceae bacterium RH AL1 might be an attractive target for developing biorecovery strategies to obtain these economically highly demanded metals in environmentally friendly ways.


Assuntos
Beijerinckiaceae/metabolismo , Lantânio/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/genética , Beijerinckiaceae/genética , Beijerinckiaceae/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Metanol/metabolismo , Microscopia Eletrônica de Transmissão , Periplasma/metabolismo
8.
New Phytol ; 232(2): 610-624, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34235760

RESUMO

Drosophila, Arabidopsis, Synechocystis, Homo (DASH) cryptochromes belong to the cryptochrome/photolyase family and can act as DNA repair enzymes. In bacteria and fungi, they also can play regulatory roles, but in plants their biological functions remain elusive. Here, we characterize CRY-DASH1 from the green alga Chlamydomonas reinhardtii. We perform biochemical and in vitro photochemical analysis. For functional characterization, a knock-out mutant of cry-dash1 is used. CRY-DASH1 protein is localized in the chloroplast and accumulates at midday. Although the photoautotrophic growth of the mutant is significantly reduced compared to the wild-type (WT), the mutant has increased levels of photosynthetic pigments and a higher maximum photochemical efficiency of photosystem II (PS II). Hyper-stacking of thylakoid membranes occurs together with an increase in proteins of the PS II reaction center, D1 and its antenna CP43, but not of their transcripts. CRY-DASH1 binds fully reduced flavin adenine dinucleotide and the antenna 5,10-methenyltetrahydrofolate, leading to an absorption peak in the UV-A range. Supplementation of white light with UV-A increases photoautotrophic growth of the WT but not of the cry-dash1 mutant. These results suggest a balancing function of CRY-DASH1 in the photosynthetic machinery and point to its role as a photoreceptor for the UV-A range separated from the absorption of photosynthetic pigments.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Synechocystis , Animais , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Criptocromos/genética , Drosophila , Luz
9.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769283

RESUMO

Doxorubicin (Dox) is a chemotherapeutic agent with cardiotoxicity associated with profibrotic effects. Dox increases ceramide levels with pro-inflammatory effects, cell death, and fibrosis. The purpose of our study was to identify the underlying ceramide signaling pathways. We aimed to characterize the downstream effects on cell survival, metabolism, and fibrosis. Human fibroblasts (hFSF) were treated with 0.7 µM of Dox or transgenically overexpressed ceramide synthase 2 (FLAG-CerS2). Furthermore, cells were pre-treated with MitoTempo (MT) (2 h, 20 µM) or Fumonisin B1 (FuB) (4 h, 100 µM). Protein expression was measured by Western blot or immunofluorescence (IF). Ceramide levels were determined with mass spectroscopy (MS). Visualizations were conducted using laser scanning microscopy (LSM) or electron microscopy. Mitochondrial activity was measured using seahorse analysis. Dox and CerS2 overexpression increased CerS2 protein expression. Coherently, ceramides were elevated with the highest peak for C24:0. Ceramide- induced mitochondrial ROS production was reduced with MT or FuB preincubation. Mitochondrial homeostasis was reduced and accompanied by reduced ATP production. Our data show that the increase in pro-inflammatory ceramides is an essential contributor to Dox side-effects. The accumulation of ceramides resulted in a lipotoxic shift and subsequently mitochondrial structural and functional damage, which was partially reversible following inhibition of ceramide synthesis.


Assuntos
Ceramidas/metabolismo , Doxorrubicina/efeitos adversos , Prepúcio do Pênis/patologia , Proteínas de Membrana/genética , Esfingosina N-Aciltransferase/genética , Proteínas Supressoras de Tumor/genética , Trifosfato de Adenosina/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Humanos , Masculino , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
10.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799364

RESUMO

Epithelial membrane proteins (EMP1-3) are involved in epithelial differentiation and carcinogenesis. Dysregulated expression of EMP2 was observed in various cancers, but its role in human lung cancer is not yet clarified. In this study, we analyzed the expression of EMP1-3 and investigated the biological function of EMP2 in non-small cell lung cancer (NSCLC). The results showed that lower expression of EMP1 was significantly correlated with tumor size in primary lung tumors (p = 0.004). Overexpression of EMP2 suppressed tumor cell growth, migration, and invasion, resulting in a G1 cell cycle arrest, with knockdown of EMP2 leading to enhanced cell migration, related to MAPK pathway alterations and disruption of cell cycle regulatory genes. Exosomes isolated from transfected cells were taken up by tumor cells, carrying EMP2-downregulated microRNAs (miRNAs) which participated in regulation of the tumor microenvironment. Our data suggest that decreased EMP1 expression is significantly related to increased tumor size in NSCLC. EMP2 suppresses NSCLC cell growth mainly by inhibiting the MAPK pathway. EMP2 might further affect the tumor microenvironment by regulating tumor microenvironment-associated miRNAs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/genética , Microambiente Tumoral/genética , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/genética
11.
Basic Res Cardiol ; 115(4): 37, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424548

RESUMO

Human-induced pluripotent stem cells (h-iPSCs) are a unique in vitro model for cardiovascular research. To realize the potential applications of h-iPSCs-derived cardiomyocytes (CMs) for drug testing or regenerative medicine and disease modeling, characterization of the metabolic features is critical. Here, we show the transcriptional profile during stages of cardiomyogenesis of h-iPSCs-derived CMs. CM differentiation was not only characterized by the expression of mature structural components (MLC2v, MYH7) but also accompanied by a significant increase in mature metabolic gene expression and activity. Our data revealed a distinct substrate switch from glucose to fatty acids utilization for ATP production. Basal respiration and respiratory capacity in 9 days h-iPSCs-derived CMs were glycolysis-dependent with a shift towards a more oxidative metabolic phenotype at 14 and 28 day old CMs. Furthermore, mitochondrial analysis characterized the early and mature forms of mitochondria during cardiomyogenesis. These results suggest that changes in cellular metabolic phenotype are accompanied by increased O2 consumption and ATP synthesis to fulfill the metabolic needs of mature CMs activity. To further determine functionality, the physiological response of h-iPSCs-derived CMs to ß-adrenergic stimulation was tested. These data provide a unique in vitro human heart model for the understanding of CM physiology and metabolic function which may provide useful insight into metabolic diseases as well as novel therapeutic options.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células Cultivadas , Humanos
12.
Cereb Cortex ; 29(10): 4263-4276, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30541023

RESUMO

Brain functions are extremely sensitive to pH changes because of the pH-dependence of proteins involved in neuronal excitability and synaptic transmission. Here, we show that the Na+/H+ exchanger Nhe1, which uses the Na+ gradient to extrude H+, is expressed at both inhibitory and excitatory presynapses. We disrupted Nhe1 specifically in mice either in Emx1-positive glutamatergic neurons or in parvalbumin-positive cells, mainly GABAergic interneurons. While Nhe1 disruption in excitatory neurons had no effect on overall network excitability, mice with disruption of Nhe1 in parvalbumin-positive neurons displayed epileptic activity. From our electrophysiological analyses in the CA1 of the hippocampus, we conclude that the disruption in parvalbumin-positive neurons impairs the release of GABA-loaded vesicles, but increases the size of GABA quanta. The latter is most likely an indirect pH-dependent effect, as Nhe1 was not expressed in purified synaptic vesicles itself. Conclusively, our data provide first evidence that Nhe1 affects network excitability via modulation of inhibitory interneurons.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciais da Membrana , Terminações Pré-Sinápticas/fisiologia , Trocador 1 de Sódio-Hidrogênio/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Epilepsia/fisiopatologia , Feminino , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terminações Pré-Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Biophys J ; 116(9): 1637-1649, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023536

RESUMO

We report the x-ray crystal structure of intact, full-length human immunoglobulin (IgG4) at 1.8 Å resolution. The data for IgG4 (S228P), an antibody targeting the natriuretic peptide receptor A, show a previously unrecognized type of Fab-Fc orientation with a distorted λ-shape in which one Fab-arm is oriented toward the Fc portion. Detailed structural analysis by x-ray crystallography and molecular simulations suggest that this is one of several conformations coexisting in a dynamic equilibrium state. These results were confirmed by small angle x-ray scattering in solution. Furthermore, electron microscopy supported these findings by preserving molecule classes of different conformations. This study fosters our understanding of IgG4 in particular and our appreciation of antibody flexibility in general. Moreover, we give insights into potential biological implications, specifically for the interaction of human anti-natriuretic peptide receptor A IgG4 with the neonatal Fc receptor, Fcγ receptors, and complement-activating C1q by considering conformational flexibility.


Assuntos
Anticorpos/química , Imunoglobulina G/química , Receptores do Fator Natriurético Atrial/imunologia , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cristalização , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de IgG/química
14.
Plant J ; 95(2): 268-281, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729034

RESUMO

Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non-toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in 2-day-old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild-type zygospores contain knob-like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild-type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption in zygospore development. In agreement with the role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild-type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Proteínas de Plantas/metabolismo , Policetídeo Sintases/metabolismo , Parede Celular/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Policetídeo Sintases/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência
15.
Environ Microbiol ; 21(5): 1809-1820, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30868709

RESUMO

Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.


Assuntos
Amoeba/microbiologia , Fungos/fisiologia , Leveduras/fisiologia , Amoeba/fisiologia , Parede Celular , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Hifas/genética , Hifas/crescimento & desenvolvimento , Fagocitose , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/isolamento & purificação
16.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31604774

RESUMO

Methylotrophic bacteria use methanol and related C1 compounds as carbon and energy sources. Methanol dehydrogenases are essential for methanol oxidation, while lanthanides are important cofactors of many pyrroloquinoline quinone-dependent methanol dehydrogenases and related alcohol dehydrogenases. We describe here the physiological and genomic characterization of newly isolated Beijerinckiaceae bacteria that rely on lanthanides for methanol oxidation. A broad physiological diversity was indicated by the ability to metabolize a wide range of multicarbon substrates, including various sugars, and organic acids, as well as diverse C1 substrates such as methylated amines and methylated sulfur compounds. Methanol oxidation was possible only in the presence of low-mass lanthanides (La, Ce, and Nd) at submicromolar concentrations (>100 nM). In a comparison with other Beijerinckiaceae, genomic and transcriptomic analyses revealed the usage of a glutathione- and tetrahydrofolate-dependent pathway for formaldehyde oxidation and channeling methyl groups into the serine cycle for carbon assimilation. Besides a single xoxF gene, we identified two additional genes for lanthanide-dependent alcohol dehydrogenases, including one coding for an ExaF-type alcohol dehydrogenase, which was so far not known in Beijerinckiaceae Homologs for most of the gene products of the recently postulated gene cluster linked to lanthanide utilization and transport could be detected, but for now it remains unanswered how lanthanides are sensed and taken up by our strains. Studying physiological responses to lanthanides under nonmethylotrophic conditions in these isolates as well as other organisms is necessary to gain a more complete understanding of lanthanide-dependent metabolism as a whole.IMPORTANCE We supplemented knowledge of the broad metabolic diversity of the Beijerinckiaceae by characterizing new members of this family that rely on lanthanides for methanol oxidation and that possess additional lanthanide-dependent enzymes. Considering that lanthanides are critical resources for many modern applications and that recovering them is expensive and puts a heavy burden on the environment, lanthanide-dependent metabolism in microorganisms is an exploding field of research. Further research into how isolated Beijerinckiaceae and other microbes utilize lanthanides is needed to increase our understanding of lanthanide-dependent metabolism. The diversity and widespread occurrence of lanthanide-dependent enzymes make it likely that lanthanide utilization varies in different taxonomic groups and is dependent on the habitat of the microbes.


Assuntos
Beijerinckiaceae , Elementos da Série dos Lantanídeos/metabolismo , Metanol/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Beijerinckiaceae/genética , Beijerinckiaceae/isolamento & purificação , Beijerinckiaceae/fisiologia , Formaldeído/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Filogenia
17.
Arch Toxicol ; 93(6): 1491-1500, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989313

RESUMO

Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 µg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Óxido de Magnésio/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos
18.
J Infect Dis ; 217(3): 358-370, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28968817

RESUMO

Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células Endoteliais/patologia , Fibrinolisina/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Plasminogênio/metabolismo , Streptococcus pneumoniae/fisiologia , Pré-Escolar , Feminino , Humanos , Infecções Pneumocócicas/microbiologia , Ligação Proteica , Streptococcus pneumoniae/isolamento & purificação
19.
Int J Syst Evol Microbiol ; 67(3): 548-556, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27902313

RESUMO

'Streptomyces caelicus' DSM 40835 was first reported as the producer of the antibiotic griselimycin by some coworkers of Rhone Poulenc in 1971. The project on isolation of the antibiotic compound was stopped because of the bad solubility and selectivity of the compound towards Mycobacteria. At Sanofi-Aventis, Germany, the project was re-evaluated in 2007 and the gene cluster of griselimycin could be identified, characterized and was patented in 2013. At this time, 'S. caelicus' was an invalid name. During the strain characterization work, it was found that 'S. caelicus' belongs to the group of species of the genus Streptomyces which show an unusual heterogeneity of the 16S rRNA gene sequences. However, high 16S rRNA gene sequence similarities to Streptomyces muensis JCM 17576T and Streptomyces canchipurensis JCM 17575T were obvious. Here, we present a comparative description of 'Streptomyces caelicus' DS 9461 (=DSM 40835=NCCB 100592) with S. muensis and S. canchipurensis by use of a polyphasic taxonomy approach and additional comparison of some housekeeping genes by multilocus sequence analysis (MLSA). An emended description of Streptomyces muensis is provided as a result of this work.


Assuntos
Filogenia , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Arch Toxicol ; 91(11): 3517-3527, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28466231

RESUMO

In this paper, we investigated the toxicological behavior of metal nanoparticles (gold, silver) and metal oxide nanoparticles (copper oxide, zinc oxide, titanium dioxide) in vitro in human colorectal adenocarcinoma cells (HT29). We analyzed the cellular uptake by ICP-MS and TEM, the influence on cell viability by MTT assay and trypan blue exclusion test, their effect on DNA damage and/or generation of oxidized bases by alkaline comet assay, and their potential to induce apoptosis by flow cytometry after 24-h nanoparticle treatment with concentrations between 2 and 10 µg/ml. We determined the amount of metal taken up by a single HT29 cell, ranging from 0.02 pg/cell up to 1.39 pg/cell. Cell viability assays showed a significantly decrease for metal oxide nanoparticles using trypan blue exclusion test and for all nanoparticles, except titanium dioxide, using MTT assay. Genotoxic effects after nanoparticle treatment were not observed for the tested concentrations. Apoptosis induction was significantly increased for silver nanoparticles (tested for two sizes) as well as for titanium dioxide and zinc oxide nanoparticles. Our results indicate potential health risks of oral NP uptake by food ingredients or food contamination, making further mechanistic investigations on cellular uptake and toxicity necessary.


Assuntos
Nanopartículas Metálicas/toxicidade , Testes de Toxicidade/métodos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Cobre/farmacocinética , Cobre/toxicidade , Dano ao DNA/efeitos dos fármacos , Citometria de Fluxo , Ouro/farmacocinética , Ouro/toxicidade , Células HT29 , Humanos , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Prata/farmacocinética , Prata/toxicidade , Titânio/farmacocinética , Titânio/toxicidade , Óxido de Zinco/farmacocinética , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa