Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Chem Biol ; 20(2): 170-179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37919549

RESUMO

Small molecules that induce protein-protein associations represent powerful tools to modulate cell circuitry. We sought to develop a platform for the direct discovery of compounds able to induce association of any two preselected proteins, using the E3 ligase von Hippel-Lindau (VHL) and bromodomains as test systems. Leveraging the screening power of DNA-encoded libraries (DELs), we synthesized ~1 million DNA-encoded compounds that possess a VHL-targeting ligand, a variety of connectors and a diversity element generated by split-and-pool combinatorial chemistry. By screening our DEL against bromodomains in the presence and absence of VHL, we could identify VHL-bound molecules that simultaneously bind bromodomains. For highly barcode-enriched library members, ternary complex formation leading to bromodomain degradation was confirmed in cells. Furthermore, a ternary complex crystal structure was obtained for our most enriched library member with BRD4BD1 and a VHL complex. Our work provides a foundation for adapting DEL screening to the discovery of proximity-inducing small molecules.


Assuntos
Proteínas Nucleares , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Ubiquitina-Proteína Ligases/metabolismo , DNA
2.
J Am Chem Soc ; 142(17): 7776-7782, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32267148

RESUMO

DNA-encoded libraries of small molecules are being explored extensively for the identification of binders in early drug-discovery efforts. Combinatorial syntheses of such libraries require water- and DNA-compatible reactions, and the paucity of these reactions currently limit the chemical features of resulting barcoded products. The present work introduces strain-promoted cycloadditions of cyclic allenes under mild conditions to DNA-encoded library synthesis. Owing to distinct cycloaddition modes of these reactive intermediates with activated olefins, 1,3-dipoles, and dienes, the process generates diverse molecular architectures from a single precursor. The resulting DNA-barcoded compounds exhibit unprecedented ring and topographic features, related to elements found to be powerful in phenotypic screening.


Assuntos
Alcadienos/química , Reação de Cicloadição/métodos , Biblioteca Gênica , Oligonucleotídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Humanos
3.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902974

RESUMO

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Microglia/metabolismo , Receptor CB2 de Canabinoide/análise , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Sondas Moleculares/química , Imagem Óptica , Sensibilidade e Especificidade , Transdução de Sinais
4.
Chemistry ; 26(6): 1380-1387, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31961047

RESUMO

The endocannabinoid (eCB) system is implied in various human diseases ranging from central nervous system to autoimmune disorders. Cannabinoid receptor 2 (CB2 R) is an integral component of the eCB system. Yet, the downstream effects elicited by this G protein-coupled receptor upon binding of endogenous or synthetic ligands are insufficiently understood-likely due to the limited arsenal of reliable biological and chemical tools. Herein, we report the design and synthesis of CB2 R-selective cannabinoids along with their in vitro pharmacological characterization (binding and functional studies). They combine structural features of HU-308 and AM841 to give chimeric ligands that emerge as potent CB2 R agonists with high selectivity over the closely related cannabinoid receptor 1 (CB1 R). The synthesis work includes convenient preparation of substituted resorcinols often found in cannabinoids. The utility of the synthetic cannabinoids in this study is showcased by preparation of the most selective high-affinity fluorescent probe for CB2 R to date.


Assuntos
Aminas/química , Canabinoides/química , Dronabinol/análogos & derivados , Receptor CB2 de Canabinoide/metabolismo , Sítios de Ligação , Canabinoides/metabolismo , Dronabinol/química , Dronabinol/metabolismo , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/química
5.
J Am Chem Soc ; 140(19): 6067-6075, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29420021

RESUMO

Chemical tools and methods that report on G protein-coupled receptor (GPCR) expression levels and receptor occupancy by small molecules are highly desirable. We report the development of LEI121 as a photoreactive probe to study the type 2 cannabinoid receptor (CB2R), a promising GPCR to treat tissue injury and inflammatory diseases. LEI121 is the first CB2R-selective bifunctional probe that covalently captures CB2R upon photoactivation. An incorporated alkyne serves as ligation handle for the introduction of reporter groups. LEI121 enables target engagement studies and visualization of endogenously expressed CB2R in HL-60 as well as primary human immune cells using flow cytometry. Our findings show that strategically functionalized probes allow monitoring of endogenous GPCR expression and engagement in human cells using tandem photoclick chemistry and hold promise as biomarkers in translational drug discovery.


Assuntos
Morfolinas/química , Marcadores de Fotoafinidade/química , Piridinas/química , Receptor CB2 de Canabinoide/biossíntese , Receptor CB2 de Canabinoide/metabolismo , Alcinos/química , Células HL-60 , Humanos , Ligantes , Estrutura Molecular , Morfolinas/síntese química , Marcadores de Fotoafinidade/síntese química , Piridinas/síntese química
6.
J Am Chem Soc ; 139(50): 18206-18212, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161035

RESUMO

The cannabinoid receptor 1 (CB1) is an inhibitory G protein-coupled receptor abundantly expressed in the central nervous system. It has rich pharmacology and largely accounts for the recreational use of cannabis. We describe efficient asymmetric syntheses of four photoswitchable Δ9-tetrahydrocannabinol derivatives (azo-THCs) from a central building block 3-Br-THC. Using electrophysiology and a FRET-based cAMP assay, two compounds are identified as potent CB1 agonists that change their effect upon illumination. As such, azo-THCs enable CB1-mediated optical control of inwardly rectifying potassium channels, as well as adenylyl cyclase.


Assuntos
Canabinoides/química , Dronabinol/química , Fármacos Fotossensibilizantes/química , Animais , Sítios de Ligação , Bioensaio , Encéfalo/efeitos dos fármacos , Desenho de Fármacos , Fenômenos Eletrofisiológicos , Óptica e Fotônica , Ratos , Receptor CB1 de Canabinoide , Transdução de Sinais
7.
Nat Commun ; 14(1): 4930, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582753

RESUMO

Diversity-oriented synthesis (DOS) is a powerful strategy to prepare molecules with underrepresented features in commercial screening collections, resulting in the elucidation of novel biological mechanisms. In parallel to the development of DOS, DNA-encoded libraries (DELs) have emerged as an effective, efficient screening strategy to identify protein binders. Despite recent advancements in this field, most DEL syntheses are limited by the presence of sensitive DNA-based constructs. Here, we describe the design, synthesis, and validation experiments performed for a 3.7 million-member DEL, generated using diverse skeleton architectures with varying exit vectors and derived from DOS, to achieve structural diversity beyond what is possible by varying appendages alone. We also show screening results for three diverse protein targets. We will make this DEL available to the academic scientific community to increase access to novel structural features and accelerate early-phase drug discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas/métodos , Biblioteca Gênica , DNA/genética , DNA/química
8.
Front Pharmacol ; 13: 841766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645832

RESUMO

The distribution and roles of the cannabinoid CB2 receptor in the CNS are still a matter of debate. Recent data suggest that, in addition to its presence in microglial cells, the CB2 receptor may be also expressed at low levels, yet biologically relevant, in other cell types such as neurons. It is accepted that the expression of CB2 receptors in the CNS is low under physiological conditions and is significantly elevated in chronic neuroinflammatory states associated with neurodegenerative diseases such as Alzheimer's disease. By using a novel mouse model (CB2 EGFP/f/f), we studied the distribution of cannabinoid CB2 receptors in the 5xFAD mouse model of Alzheimer's disease (by generating 5xFAD/CB2 EGFP/f/f mice) and explored the roles of CB2 receptors in microglial function. We used a novel selective and brain penetrant CB2 receptor agonist (RO6866945) as well as mice lacking the CB2 receptor (5xFAD/CB2 -/-) for these studies. We found that CB2 receptors are expressed in dystrophic neurite-associated microglia and that their modulation modifies the number and activity of microglial cells as well as the metabolism of the insoluble form of the amyloid peptide. These results support microglial CB2 receptors as potential targets for the development of amyloid-modulating therapies.

9.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694350

RESUMO

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

11.
ChemMedChem ; 10(3): 461-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25630804

RESUMO

The tert-butyl group is a common motif in medicinal chemistry. Its incorporation into bioactive compounds is often accompanied by unwanted property modulation, such as increased lipophilicity and decreased metabolic stability. Several alternative substituents are available for the drug discovery process. Herein, physicochemical data of two series of drug analogues of bosentan and vercirnon are documented as part of a comparative study of tert-butyl, pentafluorosulfanyl, trifluoromethyl, bicyclo[1.1.1]pentanyl, and cyclopropyl-trifluoromethyl substituents.


Assuntos
Butanos/química , Butanos/farmacocinética , Descoberta de Drogas , Butanos/farmacologia , Halogenação , Humanos , Metilação , Relação Estrutura-Atividade , Compostos de Enxofre/química , Compostos de Enxofre/farmacocinética , Compostos de Enxofre/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa