Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(18): 6672-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24733898

RESUMO

Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.


Assuntos
Briófitas/genética , Gleiquênias/genética , Transferência Genética Horizontal , Fotorreceptores de Plantas/genética , Proteínas de Algas/genética , Anthocerotophyta/genética , Sequência de Bases , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas , Dados de Sequência Molecular , Fototropinas/genética , Filogenia , Fitocromo/genética , Proteínas Recombinantes de Fusão/genética , Transcriptoma , Xantofilas/genética
2.
Am J Bot ; 103(12): 2160-2169, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27999080

RESUMO

PREMISE OF THE STUDY: The lycophyte family Selaginellaceae includes approximately 750 herbaceous species worldwide, with the main species richness in the tropics and subtropics. We recently presented a phylogenetic analysis of Selaginellaceae based on DNA sequence data and, with the phylogeny as a framework, the study discussed the character evolution of the group focusing on gross morphology. Here we translate these findings into a new classification. METHODS: To present a robust and useful classification, we identified well-supported monophyletic groups from our previous phylogenetic analysis of 223 species, which together represent the diversity of the family with respect to morphology, taxonomy, and geographical distribution. Care was taken to choose groups with supporting morphology. KEY RESULTS: In this classification, we recognize a single genus Selaginella and seven subgenera: Selaginella, Rupestrae, Lepidophyllae, Gymnogynum, Exaltatae, Ericetorum, and Stachygynandrum. The subgenera are all well supported based on analysis of DNA sequence data and morphology. A key to the subgenera is presented. CONCLUSIONS: Our new classification is based on a well-founded hypothesis of the evolutionary relationships of Selaginella, and each subgenus can be identified by a suite of morphological features, most of them possible to study in the field. Our intention is that the classification will be useful not only to experts in the field, but also to a broader audience.


Assuntos
Selaginellaceae/classificação , Evolução Biológica , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/classificação , Folhas de Planta/genética , Selaginellaceae/anatomia & histologia , Selaginellaceae/genética , Análise de Sequência de DNA
3.
Am J Bot ; 103(12): 2136-2159, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27999082

RESUMO

PREMISE OF THE STUDY: The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. METHODS: We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. KEY RESULTS: We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! CONCLUSIONS: Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Selaginellaceae/classificação , Selaginellaceae/genética , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , Cloroplastos/genética , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/classificação , Folhas de Planta/genética , Proteínas de Plantas/genética , Selaginellaceae/anatomia & histologia , Alinhamento de Sequência , Análise de Sequência de DNA
5.
Plants (Basel) ; 10(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808587

RESUMO

From an ornamental viewpoint, tulips are famous clonally propagated crops. This research focuses on 15 wild-growing Greek tulip species including 11 range-restricted species, i.e., six Greek endemics and five Balkan or Aegean endemics and subendemics, among which seven are currently threatened with extinction (two Critically Endangered, three Endangered and two Vulnerable). An overview of the global electronic trade over the internet is presented herein for these valuable phytogenetic resources in an attempt to define the extent of their commercialization (25 nurseries in three countries, mainly bulb trade at various prices) with concomitant conservation implications. In the frame of the repatriation initiatives launched, their global ex situ conservation is overviewed according to the PlantSearch facility of the Botanic Gardens Conservation International (materials from 15 species stored in 41 botanic gardens of 14 countries). The results of this study on the Greek tulips showed that there are both well-established value chains and gaps in the market regarding the "botanical tulips"; revealed the compromised effectiveness of ex situ conservation for the majority of them; raised conservation concerns related to authorized access to these wild phytogenetic resources; and indicated that their future utilization should comply with the provision of national and international legislation. All these are envisaged and discussed within the framework of the newly launched research project TULIPS.GR which aims to be the pilot establishment of a national collection regarding all Greek tulips (currently holding 38 accessions of 13 species, including almost all of the threatened ones). The project's scope is to enable the creation of a sustainable value chain for the Greek tulips with authorized collections, sustainable conservation schemes, production of DNA barcoded propagation material, species-specific propagation and cultivation protocols, mycorrhizal investigations, field studies, applying innovative precise soil/foliar fertigation, and investigation of the postharvest treatment of fresh cut flowers, promoting networking and synergies with producers and associations in Greece and abroad.

6.
PLoS One ; 8(9): e74374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040233

RESUMO

Evolution of lineage diversification through time is an active area of research where much progress has been made in the last decade. Contrary to the situation in animals and plants little is known about how diversification rates have evolved in most major groups of protist. This is mainly due to uncertainty about phylogenetic relationships, scarcity of the protist fossil record and the unknown diversity within these lineages. We have analyzed the evolutionary history of the supergroup Amoebozoa over the last 1000 million years using molecular dating and species number estimates. After an origin in the marine environment we have dated the colonization of terrestrial habitats by three distinct lineages of Amoebozoa: Dictyostelia, Myxogastria and Arcellinida. The common ancestor of the two sister taxa, Dictyostelia and Myxogastria, appears to have existed before the colonization of land by plants. In contrast Arcellinida seems to have diversify in synchrony with land plant radiation, and more specifically with that of mosses. Detection of acceleration of diversification rates in Myxogastria and Arcellinida points to a co-evolution within the terrestrial habitats, where land plants and the amoebozoans may have interacted during the evolution of these new ecosystems.


Assuntos
Amebozoários/classificação , Evolução Biológica , Modelos Genéticos , Filogenia , Amebozoários/genética , Biodiversidade , Ecossistema , Ilhas , Oceanos e Mares , Dispersão Vegetal , Plantas/classificação , Plantas/genética , Incerteza
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa