Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Genet Genomics ; 298(4): 895-903, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120777

RESUMO

Fusarium wilt caused by the soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) has become one of the most important emerging diseases in US cotton production. Numerous QTLs have been reported for resistance to FOV; however, no major FOV4-resistance QTL or gene has been identified and used in breeding Upland cotton (Gossypium hirsutum) for FOV4 resistance. In this study, a panel of 223 Chinese Upland cotton accessions was evaluated for FOV4 resistance based on seedling mortality rate (MR) and stem and root vascular discoloration (SVD and RVD). SNP markers were developed based on targeted genome sequencing using AgriPlex Genomics. The chromosome region at 2.130-2.292 Mb on D03 was significantly correlated with both SVD and RVD but not with MR. Based on the two most significant SNP markers, accessions homozygous for AA or TT SNP genotype averaged significantly lower SVD (0.88 vs. 2.54) and RVD (1.46 vs. 3.02) than those homozygous for CC or GG SNP genotype. The results suggested that a gene or genes within the region conferred resistance to vascular discoloration caused by FOV4. The Chinese Upland accessions had 37.22% homozygous AA or TT SNP genotype and 11.66% heterozygous AC or TG SNP genotype, while 32 US elite public breeding lines all had the CC or GG SNP genotype. Among 463 obsolete US Upland accessions, only 0.86% possessed the AA or TT SNP genotype. This study, for the first time, has developed diagnostic SNPs for marker-assisted selection and identified FOV4-resistant Upland germplasms with the SNPs.


Assuntos
Fusarium , Gossypium , Gossypium/genética , Gossypium/microbiologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Mol Genet Genomics ; 298(6): 1579-1589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37923792

RESUMO

Upland cotton (Gossypium hirsutum) is the most important fiber crop for the global textile industry. Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive soil-borne fungal pathogens in cotton. Among eight pathogenic races and other strains, FOV race 4 (FOV4) is the most virulent race in US cotton production. A single nucleotide polymorphism (SNP) in a glutamate receptor-like gene (GhGLR4.8) on chromosome D03 was previously identified and validated to confer resistance to FOV race 7, and targeted genome sequencing demonstrated that it was also associated with resistance to FOV4. The objective of this study was to develop an easy and convenient PCR-based marker assay. To target the resistance SNP, a forward primer for the SNP with a mismatch in the 3rd position was designed for both the resistance (R) and susceptibility (S) alleles, respectively, with addition of 20-mer T7 promoter primer to the 5' end of the forward primer for the R allele. The two forward primers, in combination with each of five common reverse primers, were targeted to amplify amplicons of 50-260 bp in size with R and S alleles differing in 20 bp. Results showed that each of three common reverse primers in combination with the two forward primers produced polymorphic markers between R and S plants that were consistent with the targeted genome sequencing results. The polymorphism was distinctly resolved using both polyacrylamide and agarose gel electrophoreses. In addition, a sequence comparative analysis between the resistance gene and homologous sequences in sequenced tetraploid and diploid A and D genome species showed that none of the species possessed the resistance gene allele, suggesting its recent origin from a natural point mutation. The allele-specific PCR-based SNP typing method based on a three-primer combination provides a fast and convenient marker-assisted selection method to search and select for FOV4-resistant Upland cotton.


Assuntos
Fusarium , Gossypium , Gossypium/genética , Gossypium/microbiologia , Alelos , Polimorfismo de Nucleotídeo Único/genética , Fusarium/genética , Reação em Cadeia da Polimerase , Cromossomos de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Phytopathology ; 113(5): 904-916, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647181

RESUMO

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a soilborne fungal pathogen threatening U.S. cotton production. The objective of this study was to develop a reliable and efficient method to evaluate cotton for FOV4 resistance based on taproot rot during seed germination through five growth chamber tests and two greenhouse tests. Seeds from eight cotton cultivars (Set 1) were germinated in a paper towel for 6 days, and taproots were inoculated with a FOV4 conidial suspension using three inoculation methods (i.e., taproot dipping, taproot wounding, and paper towel drenching), in addition to seed soaking before germination. The taproot rot-based disease incidence (DI) and disease severity rating (DSR), seed germination percentage (SGP), and plant fresh weight (PFW) were measured 7 days after inoculation. Taproot dipping was the most efficient and reliable evaluation method. The SGP and PFW were not significantly correlated with the DI and DSR, making them inappropriate to use in resistance evaluation. Pima DP 359 RF and PHY 881 RF were the most resistant with the lowest root rot. The taproot dipping method was repeated in another test and confirmed in two tests using another set of eight cultivars (Set 2). The taproot rot-based DSR at germination was significantly correlated with the DSR at the seedling stage in the greenhouse in both sets and with previous results in seedling mortality in the greenhouse and field in Set 2. The results suggest that the response to FOV4 infections at the seed germination stage is overall congruent with that at the seedling stage.


Assuntos
Fusarium , Fusarium/fisiologia , Germinação , Sementes , Doenças das Plantas/microbiologia , Gossypium , Plântula
4.
J Nematol ; 55(1): 20230024, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37288386

RESUMO

A three-year rotation of cotton (Gossypium hirsutum) cultivars either resistant (R) or susceptible (S) to Rotylenchulus reniformis and fallow (F) was examined for effect on cotton yield and nematode density. In year 1, 2, and 3, the resistant cultivar (DP 2143NR B3XF) yielded 78, 77, and 113% higher than the susceptible cultivar (DP 2044 B3XF). Fallow in year 1 followed by S in year 2 (F1S2) improved yield in year 2 by 24% compared with S1S2, but not as much as R1S2 (41% yield increase over S1S2). One year of fallow followed by R (F1R2) had lower yield in year 2 (11% reduction) than R1R2. The highest yield after three years of these rotations occurred with R1R2R3, followed by R1S2R3 (17% less yield) and F1F2S3 (35% less yield). Rotylenchulus reniformis density in soil averaged 57, 65, and 70% lower (year 1, 2, 3, respectively) in R1R2R3 compared with S1S2S3. In years 1 and 2, LOG10 transformed nematode density (LREN) was lower in F1, and F1F2, than for all other combinations. In year 3, the lowest LREN were associated with R1R2R3, F1S2F3, and F1F2S3. The highest LREN were associated with F1R2S3, F1S2S3, S1S2S3, R1R2S3, and R1S2S3. The combination of higher yield and lower nematode density will be a strong incentive for producers to use the R. reniformis resistant cultivars continuously.

5.
Mol Genet Genomics ; 297(2): 319-332, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35020076

RESUMO

KEY MESSAGE: A backcross inbred line population of cotton was evaluated for Fusarium wilt race 4 resistance at different days after inoculation (DAI). Both constitutively expressed and developmentally regulated QTLs were detected. The soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) causes Fusarium wilt including seedling mortality in cotton. A backcross inbred line (BIL) population of 181 lines, derived from a bi-parental cross of moderately resistant non-recurrent Hai 7124 (Gossypium barbadense) and recurrent parent CCRI 36 (G. hirsutum), was evaluated under temperature-controlled conditions for FOV4 resistance with artificial inoculations. Based on three replicated tests evaluated at 7, 14, 21, and 28 days after inoculation (DAI), only 2-5 BILs showed lower disease severity ratings (DSR) than the parents while 22-50 BILs were more susceptible, indicating transgressive segregation toward susceptibility. Although DSR were overall congruent between DAI, there were many BILs displaying different responses to FOV4 across DAI. Genetic mapping using 7709 SNP markers identified 42 unique QTLs for four evaluation parameters- disease incidence (DI), DSR, mortality rate (MR), and area under disease progress curve (AUDPC), including 26 for two or more parameters. All five QTLs for AUDPC were co-localized with QTLs for DI, DSR, and/or MR at one or two DAI, indicating the unnecessary use of AUDPC in QTL mapping for FOV4 resistance. Those common QTLs explained the significant positive associations between parameters observed. Ten common QTLs with negative or positive additive effects were detected between DAI. DAI-specific and consistent QTLs were detected between DAI in cotton for the first time, suggesting the existence of both constitutively expressed and developmentally regulated QTLs for FOV4 resistance and the importance of evaluating genetic populations for FOV4 resistance at different growth stages.


Assuntos
Fusarium , Fusarium/genética , Gossypium/genética , Gossypium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética
6.
Phytopathology ; 112(4): 852-861, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34503350

RESUMO

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) causes an early season cotton disease including seedling deaths. This study compared two Pima cottons (Gossypium barbadense) in the infection process of FOV4 using a confocal and a scanning electron microscope. Seedlings were grown in a hydroponic system and inoculated with a virulent local FOV4 isolate. As compared with the susceptible Pima S-7, the resistant Pima PHY 841 RF had significantly fewer conidia attached and germinated on the root surface. FOV4 penetration into the root epidermis of PHY 841 RF was delayed until 24 h postinoculation (hpi) as compared with 8 hpi in Pima S-7. In Pima S-7, hyphae progressed to the xylem through the cortex between 5 and 7 days postinoculation. However, hyphae grew much slower in the cortex with no apparent hyphae observed in the xylem of PHY 841 RF. At plant maturity, no FOV4 was detected through fungal isolation and PCR in the stem of PHY 841 RF and its resistance donor parents PHY 800 and Pima S-6, as compared with Pima S-7 and DP 744 with positive results. The results demonstrate that PHY 841 RF is resistant to FOV4, due to delayed infection, reduced fungal growth and reproduction, and prevention of the fungus from invading the xylem.


Assuntos
Fusarium , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Iodeto de Potássio , Plântula
7.
Plant Dis ; 106(8): 2228-2238, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34978874

RESUMO

Meta-analysis was used to compare yield protection and nematode suppression provided by two seed-applied and two soil-applied nematicides against Meloidogyne incognita and Rotylenchulus reniformis on cotton across 3 years and several trial locations in the U.S. Cotton Belt. Nematicides consisted of thiodicarb- and fluopyram-treated seed, aldicarb and fluopyram applied in furrow, and combinations of the seed treatments and soil-applied fluopyram. The nematicides had no effect on nematode reproduction or root infection but had a significant impact on seed cotton yield response ([Formula: see text]), with an average increase of 176 and 197 kg/ha relative to the nontreated control in M. incognita and R. reniformis infested fields, respectively. However, because of significant variation in yield protection and nematode suppression by nematicides, five or six moderator variables (cultivar resistance [M. incognita only], nematode infestation level, nematicide treatment, application method, trial location, and growing season) were used depending on nematode species. In M. incognita-infested fields, greater yield protection was observed with nematicides applied in furrow and with seed-applied + in-furrow than with solo seed-applied nematicide applications. Most notable of these in-furrow nematicides were aldicarb and fluopyram (>131 g/ha) with or without a seed-applied nematicide compared with thiodicarb. In R. reniformis-infested fields, moderator variables provided no further explanation of the variation in yield response produced by nematicides. Furthermore, moderator variables provided little explanation of the variation in nematode suppression by nematicides in M. incognita- and R. reniformis-infested fields. The limited explanation by the moderator variables on the field efficacy of nematicides in M. incognita- and R. reniformis-infested fields demonstrates the difficulty of managing these pathogens with nonfumigant nematicides across the U.S. Cotton Belt.


Assuntos
Antinematódeos , Tylenchoidea , Aldicarb/toxicidade , Animais , Antinematódeos/toxicidade , Benzamidas/toxicidade , Gossypium , Piridinas/toxicidade , Sementes , Solo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Estados Unidos
8.
J Nematol ; 54(1): 20220017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36120511

RESUMO

Cotton (Gossypium hirsutum) cultivar trials were conducted in four fields (6 trials total) with Meloidogyne incognita (Mi)/Fusarium oxysporum f. sp. vasinfectum (Fov) from 2019 to 2021. Cotton cultivars were divided into groups based on company/Mi resistance: S = susceptible to Mi; R-FM, R-DP, and R-PHY = resistance to Mi in FiberMax®, Deltapine®, and Phytogen® cultivars, respectively; ST 4946GLB2 (moderate resistance to Mi and observed field tolerance to Fov); and ST 5600B2XF (resistance to Mi). The S and R-FM groups had the highest transformed Mi densities LOG10(Mi + 1) (LMi = 3.22 and 3.01, respectively), while R-DP and R-PHY had the lowest LMi (2.21 and 1.85, respectively). Plant mortality (%) was higher for R-DP (28.1%) than for all other groups except ST 5600B2XF (24.8%). Mi-susceptible cultivars averaged 23.3% mortality. Relative yield (0-1 scale) was higher for ST 4946GLB2 (0.706) and R-PHY (0.635) than for R-DP (0.530), ST 5600B2XF (0.578), and S (0.491). All groups except R-DP averaged higher relative yield than the susceptible cultivars. ST 4946GLB2 had the lowest mortality (16.5%) and highest relative yield, while R-DP cultivars had the highest mortality and no difference in relative yield from the Mi-susceptible cultivars. The group of R-DP cultivars had excellent Mi resistance but were susceptible to Fov. No cultivars were identified with high resistance to Fov.

9.
Mol Genet Genomics ; 296(3): 719-729, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33779828

RESUMO

Bacterial blight (BB), caused by Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease to cotton production in many countries. In the U.S., Xcm race 18 is the most virulent and widespread race and can cause serious yield losses. Planting BB-resistant cotton cultivars is the most effective method of controlling this disease. In this study, 335 U.S. Upland cotton accessions were evaluated for resistance to race 18 using artificial inoculations by scratching cotyledons on an individual plant basis in a greenhouse. The analysis of variance detected significant genotypic variation in disease incidence, and 50 accessions were resistant including 38 lines with no symptoms on either cotyledons or true leaves. Many of the resistant lines were developed in the MAR (multi-adversity resistance) breeding program at Texas A&M University, whereas others were developed before race 18 was first reported in the U.S. in 1973, suggesting a broad base of resistance to race 18. A genome-wide association study (GWAS) based on 26,301 single nucleotide polymorphic (SNP) markers detected 11 quantitative trait loci (QTL) anchored by 79 SNPs, including three QTL on each of the three chromosomes A01, A05 and D02, and one QTL on each of D08 and D10. This study has identified a set of obsolete Upland germplasm with resistance to race 18 and specific chromosomal regions delineated by SNPs for resistance. The results will assist in breeding cotton for BB resistance and facilitate further genomic studies in fine mapping resistance genes to enhance the understanding of the genetic basis of BB resistance in cotton.


Assuntos
Fibra de Algodão/microbiologia , Gossypium/genética , Gossypium/microbiologia , Xanthomonas/genética , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
10.
New Phytol ; 230(1): 275-289, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314087

RESUMO

Fusarium wilt caused by the ascomycete fungus Fusarium oxysporum is a devastating disease of many economically important crops. The mechanisms underlying plant responses to F. oxysporum infections remain largely unknown. We demonstrate here that a water-soluble, heat-resistant and nonproteinaceous F. oxysporum cell wall extract (FoCWE) component from multiple F. oxysporum isolates functions as a race-nonspecific elicitor, also termed pathogen-associated molecular pattern (PAMP). FoCWE triggers several demonstrated immune responses, including mitogen-activated protein (MAP) kinase phosphorylation, reactive oxygen species (ROS) burst, ethylene production, and stomatal closure, in cotton and Arabidopsis. Pretreated FoCWE protects cotton seeds against infections by virulent F. oxysporum f. sp. vasinfectum (Fov), and Arabidopsis plants against the virulent bacterium, Pseudomonas syringae, suggesting the potential application of FoCWEs in crop protection. Host-mediated responses to FoCWE do not appear to require LYKs/CERK1, BAK1 or SOBIR1, which are commonly involved in PAMP perception and/or signalling. However, FoCWE responses and Fusarium resistance in cotton partially require two receptor-like proteins, GhRLP20 and GhRLP31. Transcriptome analysis suggests that FoCWE preferentially activates cell wall-mediated defence, and Fov has evolved virulence mechanisms to suppress FoCWE-induced defence. These findings suggest that FoCWE is a classical PAMP that is potentially recognised by a novel pattern-recognition receptor to regulate cotton resistance to Fusarium infections.


Assuntos
Arabidopsis , Fusarium , Parede Celular , Imunidade , Doenças das Plantas , Extratos Vegetais
11.
BMC Ecol ; 20(1): 38, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646406

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

12.
PLoS Genet ; 13(9): e1007003, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28910288

RESUMO

Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.


Assuntos
Genoma Bacteriano/genética , Gossypium/genética , Doenças das Plantas/genética , Xanthomonas/genética , Resistência à Doença/genética , Genômica , Gossypium/microbiologia , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Virulência , Xanthomonas/patogenicidade
13.
J Nematol ; 52: 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726068

RESUMO

Small plot cotton cultivar trials (12 trials) were conducted from 2016 to 2019 in fields infested with Meloidogyne incognita. Entries in these trials included commercial cultivars with partial and high resistance to M. incognita, as well as cultivars with no known resistance. Different resistant groups were created based on different cotton seed companies and their descriptions of the M. incognita resistant cultivars. Groups were none (susceptible); partial resistance found in Stoneville or Fibermax cultivars (PR-FM/ST); partial resistance found in PhytoGen cultivars (PR-PHY); resistance (unknown gene(s)) in Deltapine cultivars (NR-DP); and highly resistant cultivars homozygous for RK1 and RK2 resistant genes in PhytoGen cultivars (HR-PHY). The highest lint yields using a mixed model analysis were found in the PR-FM/ST (1,396 kg lint/ha), HR-PHY (1,327 kg lint/ha), and PR-PHY (1,314 kg lint/ha) groups. Yield for NR-DP (1,234 kg lint/ha) was not different (p > 0.05) than yield for susceptible cultivars (1,243 kg lint/ha). If the older resistant cultivars from Deltapine and PhytoGen (those with only Roundup Ready® herbicide technology) were removed from the analysis, then HR-PHY yields increased by 133 kg of lint/ha to 1,460 kg lint/ha and NR-DP yields remained approximately unchanged (1,227 kg lint/ha). Newer HR-PHY had much improved yield over the first HR-PHY cultivars. Newer HR-PHY averaged 17% higher yield than the susceptible group. LOG10 (M. incognita eggs/500 cm3 soil + 1) were highest for the susceptible cultivars (3.2), followed by PR-FM/ST (2.6), NR-DP (2.4), PR-PHY (2.1), and lowest with HR-PHY (1.4). The newer HR-PHY cultivars (those with ENLIST® herbicide technology) combine excellent yields (17% higher than susceptible cultivars) with high (96%) suppression of M. incognita.Small plot cotton cultivar trials (12 trials) were conducted from 2016 to 2019 in fields infested with Meloidogyne incognita. Entries in these trials included commercial cultivars with partial and high resistance to M. incognita, as well as cultivars with no known resistance. Different resistant groups were created based on different cotton seed companies and their descriptions of the M. incognita resistant cultivars. Groups were none (susceptible); partial resistance found in Stoneville or Fibermax cultivars (PR-FM/ST); partial resistance found in PhytoGen cultivars (PR-PHY); resistance (unknown gene(s)) in Deltapine cultivars (NR-DP); and highly resistant cultivars homozygous for RK1 and RK2 resistant genes in PhytoGen cultivars (HR-PHY). The highest lint yields using a mixed model analysis were found in the PR-FM/ST (1,396 kg lint/ha), HR-PHY (1,327 kg lint/ha), and PR-PHY (1,314 kg lint/ha) groups. Yield for NR-DP (1,234 kg lint/ha) was not different (p > 0.05) than yield for susceptible cultivars (1,243 kg lint/ha). If the older resistant cultivars from Deltapine and PhytoGen (those with only Roundup Ready® herbicide technology) were removed from the analysis, then HR-PHY yields increased by 133 kg of lint/ha to 1,460 kg lint/ha and NR-DP yields remained approximately unchanged (1,227 kg lint/ha). Newer HR-PHY had much improved yield over the first HR-PHY cultivars. Newer HR-PHY averaged 17% higher yield than the susceptible group. LOG10 (M. incognita eggs/500 cm3 soil + 1) were highest for the susceptible cultivars (3.2), followed by PR-FM/ST (2.6), NR-DP (2.4), PR-PHY (2.1), and lowest with HR-PHY (1.4). The newer HR-PHY cultivars (those with ENLIST® herbicide technology) combine excellent yields (17% higher than susceptible cultivars) with high (96%) suppression of M. incognita.

14.
BMC Ecol ; 19(1): 53, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861996

RESUMO

BACKGROUND: Pleistocene glaciations have had an important impact on the species distribution and community composition of the North American biota. Species survived these glacial cycles south of the ice sheets and/or in other refugia, such as Beringia. In this study, we assessed, using mitochondrial DNA from three Diptera species, whether flies currently found in Beringian grasslands (1) survived glaciation as disjunct populations in Beringia and in the southern refugium; (2) dispersed northward postglacially from the southern refugium; or (3) arose by a combination of the two. Samples were collected in grasslands in western Canada: Prairies in Alberta and Manitoba; the Peace River region (Alberta); and the southern Yukon Territory. We sequenced two gene regions (658 bp of cytochrome c oxidase subunit I, 510 bp of cytochrome b) from three species of higher Diptera: one with a continuous distribution across grassland regions, and two with disjunct populations between the regions. We used a Bayesian approach to determine population groupings without a priori assumptions and performed analysis of molecular variance (AMOVA) and exact tests of population differentiation (ETPD) to examine their validity. Molecular dating was used to establish divergence times. RESULTS: Two geographically structured populations were found for all species: a southern Prairie and Peace River population, and a Yukon population. Although AMOVA did not show significant differentiation between populations, ETPD did. Divergence time between Yukon and southern populations predated the Holocene for two species; the species with an ambiguous divergence time had high haplotype diversity, which could suggest survival in a Beringian refugium. CONCLUSIONS: Populations of Diptera in Yukon grasslands could have persisted in steppe habitats in Beringia through Pleistocene glaciations. Current populations in the region appear to be a mix of Beringian relict populations and, to a lesser extent, postglacial dispersal northward from southern prairie grasslands.


Assuntos
Dípteros , Alberta , Animais , Teorema de Bayes , DNA Mitocondrial , Variação Genética , Haplótipos , Manitoba , América do Norte , Filogenia , Filogeografia
15.
Zootaxa ; 3779: 157-76, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24871719

RESUMO

The Ecuadorian Agromyzidae described by Theodor Becker from the Mission du service géographique de l'armée pour la mesure d'un arc de méridien équatorial en Amérique du Sud are revised and several taxonomic changes are proposed. The eight named species identified by Becker actually comprise 14 species of Agromyzidae (3 Melanagromyza, 4 Cerodontha, 6 Liriomyza, 1 Nemorimyza) and one species of Heleomyzidae. Three new species are described: Cerodontha (Cerodontha) angela Boucher sp. n.; Liriomyza biensis Boucher sp. n.; Melanagromyza pontis Boucher sp. n. New species records for Ecuador include Melanagromyza memoranda Spencer; M. lini Spencer; Cerodontha (C.) colombiensis Spencer; Liriomyza nigra Spencer and Nemorimyza fuscibasis (Malloch). Cerodontha (C.) nigricornis Becker is redescribed, including the first description of the male genitalia. Liriomyza biformata (Becker) is redescribed and two species are included as junior synonyms of L. biformata: Agromyza braziliensis Frost syn. n. and A. ecuadorensis Frost syn. n. Agromyza bipartita Becker is transferred to the family Heleomyzidae as Notomyza bipartita comb. n.


Assuntos
Dípteros/classificação , Estruturas Animais/anatomia & histologia , Animais , Dípteros/anatomia & histologia , Equador , Feminino , Masculino
16.
J Econ Entomol ; 106(2): 648-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23786050

RESUMO

The larger black flour beetles, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), feeds on saprophytic fungi found in gin trash piles and occasionally becomes a nuisance pest in adjacent homes and businesses. The potential of Steinernema carpocapsae 'NY 001,' as a potential control agent of larger black flour beetle under experimental conditions was examined with particular reference to the importance of soil moisture content. Without prospects of insecticides being labeled for control of larger black flour beetle in gin trash, the data presented here support further research into applications of entomopathogenic nematodes underneath gin trash piles as a way to minimize risk of larger black flour beetle populations causing nuisance to nearby homes and businesses.


Assuntos
Agentes de Controle Biológico , Besouros/parasitologia , Rabditídios/crescimento & desenvolvimento , Análise de Variância , Animais , Besouros/crescimento & desenvolvimento , Dieta , Gossypium , Resíduos Industriais , Densidade Demográfica , Rabditídios/fisiologia , Solo/química
17.
J Integr Plant Biol ; 55(7): 586-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23675706

RESUMO

Virus-induced gene silencing (VIGS) offers a powerful approach for functional analysis of individual genes by knocking down their expression. We have adopted this approach to dissect gene functions in cotton resistant to Verticillium wilt, one of the most devastating diseases worldwide. We showed here that highly efficient VIGS was obtained in a cotton breeding line (CA4002) with partial resistance to Verticillium wilt, and GhMKK2 and GhVe1 are required for its resistance to Verticillium wilt. Arabidopsis AtBAK1/SERK3, a central regulator in plant disease resistance, belongs to a subfamily of somatic embryogenesis receptor kinases (SERKs) with five members, AtSERK1 to AtSERK5. Two BAK1 orthologs and one SERK1 ortholog were identified in the cotton genome. Importantly, GhBAK1 is required for CA4002 resistance to Verticillium wilt. Surprisingly, silencing of GhBAK1 is sufficient to trigger cell death accompanied with production of reactive oxygen species in cotton. This result is distinct from Arabidopsis in which AtBAK1 and AtSERK4 play redundant functions in cell death control. Apparently, cotton has only evolved SERK1 and BAK1 whereas AtSERK4/5 are newly evolved genes in Arabidopsis. Our studies indicate the functional importance of BAK1 in Verticillium wilt resistance and suggest the dynamic evolution of SERK family members in different plant species.


Assuntos
Resistência à Doença/imunologia , Gossypium/imunologia , Gossypium/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/fisiologia , Agrobacterium/fisiologia , Sequência de Aminoácidos , Arabidopsis/microbiologia , Morte Celular , Sequência Conservada , Resistência à Doença/genética , Inativação Gênica , Gossypium/citologia , Gossypium/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Doenças das Plantas/genética , Proteínas de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência
18.
Zootaxa ; 3702: 379-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26146731

RESUMO

Three new and atypical species of Afrotropical Calamoncosis are described: Calamoncosis agricola sp. n. (type locality- South Africa: 15 km E Klaserie); Calamoncosis flavida sp. n. (type locality-South Africa: Roodewal); and Calamoncosis unicornis sp. n. (type locality-South Africa: 15 km E Klaserie). Calamoncosis unicornis exhibits extreme modification and sexual dimorphism in the antenna; in males the arista is reduced to a minute stub and the first flagellomere is greatly elongate and long setulose; in females the arista is well-developed and the first flagellomere is somewhat elongate and pubescent. Calamoncosis agricola is unusual for the genus in that crossvein dm-cu is absent, and C. flavida has an enlarged, rounded first flagellomere. The combination of characters seen in these species expands the known range of morphological variation, and thus the generic limits, of Calamoncosis. Recognition of these new species more than doubles the known Afrotropical fauna of Calamoncosis, previously represented only by C. aenescens (Becker) and C. pauliani (Séguy).


Assuntos
Dípteros/anatomia & histologia , Dípteros/classificação , Animais , Antenas de Artrópodes/anatomia & histologia , Feminino , Genitália/anatomia & histologia , Masculino , África do Sul
19.
Plant J ; 66(2): 293-305, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21219508

RESUMO

Cotton is an important cash crop worldwide, and is a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. Given the recent availability of the whole-genome sequence of cotton, it is necessary to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully developed an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with various genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we developed a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct, MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, using gene silencing assays, we have shown that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton, and have developed high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton.


Assuntos
Inativação Gênica , Gossypium/genética , Imunidade Inata , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/microbiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Protoplastos/metabolismo , Fatores de Transcrição/genética , Transfecção , Verticillium/patogenicidade
20.
Biol Lett ; 8(2): 161-3, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-21880624

RESUMO

Natural history as we have known it is in decline. A growing movement is emerging across disciplines, to understand its decline, and nurture its rebirth. A network of like-minded scientists, resource managers, educators, writers and artists-natural historians-recently convened four consecutive Natural History Initiative workshops to move past the forensic study of natural history, and instead focus on solutions, conspiring to identify opportunities that dovetail the practice of natural history with essential needs of modern science and society, and suggest ways forward. This series of workshops occurred at various locations in the western United States during the winter and spring of 2011, and recently culminated in a Synthesis Summit on 20-24 June 2011.


Assuntos
Biodiversidade , História Natural , Projetos de Pesquisa , Conservação dos Recursos Naturais , Ecologia , Etologia , História Natural/economia , História Natural/educação , História Natural/métodos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa