Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(17): 4200-4205, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809063

RESUMO

MOTIVATION: Knowledge of the 3D structure of RNA supports discovering its functions and is crucial for designing drugs and modern therapeutic solutions. Thus, much attention is devoted to experimental determination and computational prediction targeting the global fold of RNA and its local substructures. The latter include multi-branched loops-functionally significant elements that highly affect the spatial shape of the entire molecule. Unfortunately, their computational modeling constitutes a weak point of structural bioinformatics. A remedy for this is in collecting these motifs and analyzing their features. RESULTS: RNAloops is a self-updating database that stores multi-branched loops identified in the PDB-deposited RNA structures. A description of each loop includes angular data-planar and Euler angles computed between pairs of adjacent helices to allow studying their mutual arrangement in space. The system enables search and analysis of multiloops, presents their structure details numerically and visually, and computes data statistics. AVAILABILITY AND IMPLEMENTATION: RNAloops is freely accessible at https://rnaloops.cs.put.poznan.pl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , RNA/química , Conformação de Ácido Nucleico , Análise de Sequência de RNA , Bases de Dados Factuais
2.
RNA ; 26(8): 982-995, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32371455

RESUMO

RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA 3D structure prediction. With agreement from crystallographers, the RNA structures are predicted by various groups before the publication of the crystal structures. We now report the prediction of 3D structures for six RNA sequences: four nucleolytic ribozymes and two riboswitches. Systematic protocols for comparing models and crystal structures are described and analyzed. In these six puzzles, we discuss (i) the comparison between the automated web servers and human experts; (ii) the prediction of coaxial stacking; (iii) the prediction of structural details and ligand binding; (iv) the development of novel prediction methods; and (v) the potential improvements to be made. We show that correct prediction of coaxial stacking and tertiary contacts is essential for the prediction of RNA architecture, while ligand binding modes can only be predicted with low resolution and simultaneous prediction of RNA structure with accurate ligand binding still remains out of reach. All the predicted models are available for the future development of force field parameters and the improvement of comparison and assessment tools.


Assuntos
Aptâmeros de Nucleotídeos/química , RNA Catalítico/química , RNA/química , Sequência de Bases , Ligantes , Conformação de Ácido Nucleico , Riboswitch/genética
3.
Nucleic Acids Res ; 48(2): 576-588, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799609

RESUMO

Significant improvements have been made in the efficiency and accuracy of RNA 3D structure prediction methods during the succeeding challenges of RNA-Puzzles, a community-wide effort on the assessment of blind prediction of RNA tertiary structures. The RNA-Puzzles contest has shown, among others, that the development and validation of computational methods for RNA fold prediction strongly depend on the benchmark datasets and the structure comparison algorithms. Yet, there has been no systematic benchmark set or decoy structures available for the 3D structure prediction of RNA, hindering the standardization of comparative tests in the modeling of RNA structure. Furthermore, there has not been a unified set of tools that allows deep and complete RNA structure analysis, and at the same time, that is easy to use. Here, we present RNA-Puzzles toolkit, a computational resource including (i) decoy sets generated by different RNA 3D structure prediction methods (raw, for-evaluation and standardized datasets), (ii) 3D structure normalization, analysis, manipulation, visualization tools (RNA_format, RNA_normalizer, rna-tools) and (iii) 3D structure comparison metric tools (RNAQUA, MCQ4Structures). This resource provides a full list of computational tools as well as a standard RNA 3D structure prediction assessment protocol for the community.


Assuntos
Biologia Computacional , Conformação de Ácido Nucleico , RNA/química , Software , Algoritmos , Benchmarking , RNA/genética
4.
BMC Bioinformatics ; 18(1): 456, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058576

RESUMO

BACKGROUND: In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. RESULTS: Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds' rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/ . CONCLUSIONS: The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures.


Assuntos
Algoritmos , Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Análise de Sequência de RNA , Software
5.
Acta Biochim Pol ; 63(4): 753-757, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27801424

RESUMO

In the world of RNAs and proteins, similarities at the level of primary structures of two comparable molecules usually correspond to structural similarities at the tertiary level. In other words, measures of sequence and structure similarities are in general correlated - a high value of sequence similarity imposes a high value of structural similarity. However, important exceptions that stay in contrast to this general rule can be identified. It is possible to find similar structures with very different sequences, as well as similar sequences with very different structures. In this paper, we focus our attention on the latter case and propose a tool, called StructAnalyzer, supporting analysis of relations between the sequence and structure similarities. Recognition of tertiary structure diversity of molecules with very similar primary structures may be the key for better understanding of mechanisms influencing folding of RNAs or proteins, and as a result for better understanding of their function. StructAnalyzer allows exploration and visualization of structural diversity in relation to sequence similarity. We show how this tool can be used to screen RNA structures in Protein Data Bank (PDB) for sequences with structural variants.


Assuntos
Software , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , Análise de Sequência , Homologia de Sequência do Ácido Nucleico , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa