Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(4): 1238-1254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173082

RESUMO

The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.


Assuntos
Plantas , Polissacarídeos , Polissacarídeos/análise , Filogenia , Plantas/química , Parede Celular/química , Pectinas/análise , Evolução Biológica
2.
Plant Cell Environ ; 46(5): 1472-1488, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36624682

RESUMO

Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.


Assuntos
Clusia , Metabolismo Ácido das Crassuláceas , Clusia/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Água/metabolismo
3.
Prep Biochem Biotechnol ; : 1-10, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747818

RESUMO

Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.


The sugar fraction of Arabica CP (6.64 g/100 g sample) contained glucose and fructose of 4.52 and 7.34 mg/g extract respectively.Different sugar fraction concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) were tested in sterilized glucose yeast extract broth. Optimal BC yield (0.0020 g) was achieved at 0.3 g/10 mL.The BC exhibited comparable physicochemical characteristics to cellulose obtained from glucose.The cytotoxicity indicate that HaCaT cells exposed to 2­1000 µg/mL of BC had a percentage cell viability of ≥80%, but it was toxic at higher concentrations.CP represents a cheap and readily-available source for BC production, contributing to the bio-circular economic goal.

4.
Plant Cell ; 31(9): 2010-2034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266899

RESUMO

The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Complexo de Golgi/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteoma
5.
New Phytol ; 230(2): 669-682, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421150

RESUMO

Metallophytes constitute powerful models for the study of metal homeostasis, adaptation to extreme environments and the evolution of naturally selected traits. Arabidopsis halleri is a pseudometallophyte which shows constitutive zinc/cadmium (Zn/Cd) tolerance and Zn hyperaccumulation but high intraspecific variability in Cd accumulation. To examine the molecular basis of the variation in metal tolerance and accumulation, ionome, transcriptome and cell wall glycan array profiles were compared in two genetically close A. halleri populations from metalliferous and nonmetalliferous sites in Northern Italy. The metallicolous population displayed increased tolerance to and reduced hyperaccumulation of Zn, and limited accumulation of Cd, as well as altered metal homeostasis, compared to the nonmetallicolous population. This correlated well with the differential expression of transporter genes involved in trace metal entry and in Cd/Zn vacuolar sequestration in roots. Many cell wall-related genes were also more highly expressed in roots of the metallicolous population. Glycan array and histological staining analyses demonstrated that there were major differences between the two populations in terms of the accumulation of specific root pectin and hemicellulose epitopes. Our results support the idea that both specific cell wall components and regulation of transporter genes play a role in limiting accumulation of metals in A. halleri at contaminated sites.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Itália
6.
Ann Bot ; 128(5): 527-543, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34192306

RESUMO

BACKGROUND AND AIMS: The necrotrophic fungus Botrytis cinerea infects a broad range of fruit crops including domesticated grapevine Vitis vinifera cultivars. Damage caused by this pathogen is severely detrimental to the table and wine grape industries and results in substantial crop losses worldwide. The apoplast and cell wall interface is an important setting where many plant-pathogen interactions take place and where some defence-related messenger molecules are generated. Limited studies have investigated changes in grape cell wall composition upon infection with B. cinerea, with much being inferred from studies on other fruit crops. METHODS: In this study, comprehensive microarray polymer profiling in combination with monosaccharide compositional analysis was applied for the first time to investigate cell wall compositional changes in the berries of wine (Sauvignon Blanc and Cabernet Sauvignon) and table (Dauphine and Barlinka) grape cultivars during Botrytis infection and tissue maceration. This was used in conjunction with scanning electron microscopy (SEM) and X-ray computed tomography (CT) to characterize infection progression. KEY RESULTS: Grapes infected at veraison did not develop visible infection symptoms, whereas grapes inoculated at the post-veraison and ripe stages showed evidence of significant tissue degradation. The latter was characterized by a reduction in signals for pectin epitopes in the berry cell walls, implying the degradation of pectin polymers. The table grape cultivars showed more severe infection symptoms, and corresponding pectin depolymerization, compared with wine grape cultivars. In both grape types, hemicellulose layers were largely unaffected, as was the arabinogalactan protein content, whereas in moderate to severely infected table grape cultivars, evidence of extensin epitope deposition was present. CONCLUSIONS: Specific changes in the grape cell wall compositional profiles appear to correlate with fungal disease susceptibility. Cell wall factors important in influencing resistance may include pectin methylesterification profiles, as well as extensin reorganization.


Assuntos
Vitis , Vinho , Botrytis , Parede Celular , Frutas , Polissacarídeos
7.
Proc Natl Acad Sci U S A ; 115(12): E2706-E2715, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507249

RESUMO

Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique ß-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host-microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.


Assuntos
Proteínas de Bactérias/química , Microbioma Gastrointestinal , Limosilactobacillus reuteri/fisiologia , Interações Microbianas , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Animais , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Células Epiteliais/microbiologia , Concentração de Íons de Hidrogênio , Limosilactobacillus reuteri/química , Camundongos , Simulação de Dinâmica Molecular , Pectinas/metabolismo , Dobramento de Proteína , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos , Serina
8.
Plant Physiol ; 179(1): 74-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301776

RESUMO

Polyploidization has played a key role in plant breeding and crop improvement. Although its potential to increase biomass yield is well described, the effect of polyploidization on biomass composition has largely remained unexplored. Here, we generated a series of Arabidopsis (Arabidopsis thaliana) plants with different somatic ploidy levels (2n, 4n, 6n, and 8n) and performed rigorous phenotypic characterization. Kinematic analysis showed that polyploids developed slower compared to diploids; however, tetra- and hexaploids, but not octaploids, generated larger rosettes due to delayed flowering. In addition, morphometric analysis of leaves showed that polyploidy affected epidermal pavement cells, with increased cell size and reduced cell number per leaf blade with incrementing ploidy. However, the inflorescence stem dry weight was highest in tetraploids. Cell wall characterization revealed that the basic somatic ploidy level negatively correlated with lignin and cellulose content, and positively correlated with matrix polysaccharide content (i.e. hemicellulose and pectin) in the stem tissue. In addition, higher ploidy plants displayed altered sugar composition. Such effects were linked to the delayed development of polyploids. Moreover, the changes in polyploid cell wall composition promoted saccharification yield. The results of this study indicate that induction of polyploidy is a promising breeding strategy to further tailor crops for biomass production.


Assuntos
Arabidopsis/genética , Desenvolvimento Vegetal/genética , Poliploidia , Arabidopsis/crescimento & desenvolvimento , Biomassa , Parede Celular/genética , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Fenótipo , Folhas de Planta
9.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352760

RESUMO

Fresh produce is often a source of enterohaemorrhagic Escherichia coli (EHEC) outbreaks. Fimbriae are extracellular structures involved in cell-to-cell attachment and surface colonisation. F9 (Fml) fimbriae have been shown to be expressed at temperatures lower than 37 °C, implying a function beyond the mammalian host. We demonstrate that F9 fimbriae recognize plant cell wall hemicellulose, specifically galactosylated side chains of xyloglucan, using glycan arrays. E. coli expressing F9 fimbriae had a positive advantage for adherence to spinach hemicellulose extract and tissues, which have galactosylated oligosaccharides as recognized by LM24 and LM25 antibodies. As fimbriae are multimeric structures with a molecular pattern, we investigated whether F9 fimbriae could induce a transcriptional response in model plant Arabidopsis thaliana, compared with flagella and another fimbrial type, E. coli common pilus (ECP), using DNA microarrays. F9 induced the differential expression of 435 genes, including genes involved in the plant defence response. The expression of F9 at environmentally relevant temperatures and its recognition of plant xyloglucan adds to the suite of adhesins EHEC has available to exploit the plant niche.


Assuntos
Adesinas de Escherichia coli/metabolismo , Arabidopsis/microbiologia , Escherichia coli O157/fisiologia , Fímbrias Bacterianas/fisiologia , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo
10.
Planta ; 249(5): 1565-1581, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30737556

RESUMO

MAIN CONCLUSION: Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism.


Assuntos
Gossypium/metabolismo , Polissacarídeos/metabolismo , Fibra de Algodão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Xilanos/metabolismo
11.
Plant Physiol ; 176(2): 1547-1558, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29150558

RESUMO

A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a ß-1,6-galactosyl substitution of ß-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear ß-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls.


Assuntos
Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Galactanos/metabolismo , Poaceae/metabolismo , Anticorpos Monoclonais , Arabidopsis/citologia , Beta vulgaris/citologia , Parede Celular/metabolismo , Epitopos , Galactanos/química , Galactanos/imunologia , Fenômenos Mecânicos , Análise em Microsséries , Microscopia de Força Atômica , Floema/citologia , Floema/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Poaceae/citologia
12.
J Exp Bot ; 70(21): 6461-6473, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504748

RESUMO

Plants have evolved different strategies to utilize various forms of nitrogen (N) from the environment. While regulation of plant growth and development in response to application of inorganic N forms has been characterized, our knowledge about the effect on cell wall structure and composition is quite limited. In this study, we analysed cell walls of Brachypodium distachyon supplied with three types of inorganic N (NH4NO3, NO3-, or NH4+). Cell wall profiles showed distinct alterations in both the quantity and structures of individual polymers. Nitrate stimulated cellulose, but inhibited lignin deposition at the heading growth stage. On the other hand, ammonium supply resulted in higher concentration of mixed linkage glucans. In addition, the chemical structure of pectins and hemicelluloses was strongly influenced by the form of N. Supply of only NO3- led to alteration in xylan substitution and to lower esterification of homogalacturonan. We conclude that the physiological response to absorption of different inorganic N forms includes pleotropic remodelling of type II cell walls.


Assuntos
Brachypodium/metabolismo , Parede Celular/metabolismo , Nitrogênio/farmacologia , Compostos de Amônio/metabolismo , Biomassa , Brachypodium/efeitos dos fármacos , Brachypodium/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Celulose/metabolismo , Epitopos/metabolismo , Esterificação , Glucanos/metabolismo , Lignina/metabolismo , Nitratos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298375

RESUMO

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulossomas/química , Celulossomas/genética , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica , Ruminococcus/química , Ruminococcus/genética
14.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669397

RESUMO

Modifications in cell wall composition, which can be accompanied by changes in its structure, were already reported during plant interactions with other organisms, such as the mycorrhizal fungi. Arbuscular mycorrhizal (AM) fungi are among the most widespread soil organisms that colonize the roots of land plants, where they facilitate mineral nutrient uptake from the soil in exchange for plant-assimilated carbon. In AM symbiosis, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. In addition, to improve host nutrition and tolerance/resistance to environmental stresses, AM symbiosis was shown to modulate fruit features. In this study, Comprehensive Microarray Polymer Profiling (CoMMP) technique was used to verify the impact of the AM symbiosis on the tomato cell wall composition both at local (root) and systemic level (fruit). Multivariate data analyses were performed on the obtained datasets looking for the effects of fertilization, inoculation with AM fungi, and the fruit ripening stage. Results allowed for the discernment of cell wall component modifications that were correlated with mycorrhizal colonization, showing a different tomato response to AM colonization and high fertilization, both at the root and the systemic level.


Assuntos
Parede Celular/metabolismo , Frutas/fisiologia , Células Vegetais/metabolismo , Raízes de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Parede Celular/química , Parede Celular/ultraestrutura , Metaboloma , Metabolômica/métodos , Micorrizas , Células Vegetais/ultraestrutura , Raízes de Plantas/microbiologia , Polímeros/química , Polissacarídeos/metabolismo , Simbiose
15.
Plant J ; 91(3): 534-546, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28419587

RESUMO

Pectic homogalacturonan (HG) is one of the main constituents of plant cell walls. When processed to low degrees of esterification, HG can form complexes with divalent calcium ions. These macromolecular structures (also called egg boxes) play an important role in determining the biomechanics of cell walls and in mediating cell-to-cell adhesion. Current immunological methods enable only steady-state detection of egg box formation in situ. Here we present a tool for efficient real-time visualisation of available sites for HG crosslinking within cell wall microdomains. Our approach is based on calcium-mediated binding of fluorescently tagged long oligogalacturonides (OGs) with endogenous de-esterified HG. We established that more than seven galacturonic acid residues in the HG chain are required to form a stable complex with endogenous HG through calcium complexation in situ, confirming a recently suggested thermodynamic model. Using defined carbohydrate microarrays, we show that the long OG probe binds exclusively to HG that has a very low degree of esterification and in the presence of divalent ions. We used this probe to study real-time dynamics of HG during elongation of Arabidopsis pollen tubes and root hairs. Our results suggest a different spatial organisation of incorporation and processing of HG in the cell walls of these two tip-growing structures.


Assuntos
Cálcio/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Tubo Polínico/metabolismo
16.
Plant Cell Physiol ; 59(12): 2624-2636, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184190

RESUMO

Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched ß-1, 4-galactan. Plants in which all three genes were inactivated had no detectable ß-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactanos/metabolismo , Glicosiltransferases/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Genes de Plantas , Complexo de Golgi/metabolismo , Folhas de Planta/metabolismo , Proteínas Recombinantes/isolamento & purificação , Frações Subcelulares/metabolismo , Especificidade por Substrato , Nicotiana/metabolismo
17.
Plant Physiol ; 173(3): 1844-1863, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28082716

RESUMO

Infection by necrotrophs is a complex process that starts with the breakdown of the cell wall (CW) matrix initiated by CW-degrading enzymes and results in an extensive tissue maceration. Plants exploit induced defense mechanisms based on biochemical modification of the CW components to protect themselves from enzymatic degradation. The pectin matrix is the main CW target of Botrytis cinerea, and pectin methylesterification status is strongly altered in response to infection. The methylesterification of pectin is controlled mainly by pectin methylesterases (PMEs), whose activity is posttranscriptionally regulated by endogenous protein inhibitors (PMEIs). Here, AtPMEI10, AtPMEI11, and AtPMEI12 are identified as functional PMEIs induced in Arabidopsis (Arabidopsis thaliana) during B. cinerea infection. AtPMEI expression is strictly regulated by jasmonic acid and ethylene signaling, while only AtPMEI11 expression is controlled by PME-related damage-associated molecular patterns, such as oligogalacturonides and methanol. The decrease of pectin methylesterification during infection is higher and the immunity to B. cinerea is compromised in pmei10, pmei11, and pmei12 mutants with respect to the control plants. A higher stimulation of the fungal oxalic acid biosynthetic pathway also can contribute to the higher susceptibility of pmei mutants. The lack of PMEI expression does not affect hemicellulose strengthening, callose deposition, and the synthesis of structural defense proteins, proposed as CW-remodeling mechanisms exploited by Arabidopsis to resist CW degradation upon B. cinerea infection. We show that PME activity and pectin methylesterification are dynamically modulated by PMEIs during B. cinerea infection. Our findings point to AtPMEI10, AtPMEI11, and AtPMEI12 as mediators of CW integrity maintenance in plant immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiologia , Hidrolases de Éster Carboxílico/classificação , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Parede Celular/microbiologia , Inibidores Enzimáticos/classificação , Inibidores Enzimáticos/metabolismo , Interações Hospedeiro-Patógeno , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutação , Pectinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
18.
Plant Physiol ; 174(2): 1051-1066, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400496

RESUMO

The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes.


Assuntos
Parede Celular/metabolismo , Pisum sativum/citologia , Pisum sativum/metabolismo , Células Vegetais/metabolismo , Vias Biossintéticas/genética , Parede Celular/genética , Epitopos/metabolismo , Esterificação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosilação , Meristema/citologia , Meristema/metabolismo , Meristema/ultraestrutura , Análise em Microsséries , Modelos Biológicos , Monossacarídeos/análise , Pisum sativum/genética , Células Vegetais/ultraestrutura , Polissacarídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Transcrição Gênica
19.
Plant Cell ; 27(4): 1218-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804536

RESUMO

Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide sugars, which are actively transferred into the Golgi lumen by nucleotide sugar transporters (NSTs). An exception is UDP-xylose, which is biosynthesized in both the cytosol and the Golgi lumen by a family of UDP-xylose synthases. The NST-based transport of UDP-xylose into the Golgi lumen would appear to be redundant. However, employing a recently developed approach, we identified three UDP-xylose transporters in the Arabidopsis thaliana NST family and designated them UDP-XYLOSE TRANSPORTER1 (UXT1) to UXT3. All three transporters localize to the Golgi apparatus, and UXT1 also localizes to the endoplasmic reticulum. Mutants in UXT1 exhibit ∼30% reduction in xylose in stem cell walls. These findings support the importance of the cytosolic UDP-xylose pool and UDP-xylose transporters in cell wall biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Xilose/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Monossacarídeos/genética
20.
Org Biomol Chem ; 16(7): 1157-1162, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29367995

RESUMO

We report the synthesis of linear and branched (1→4)-d-galactans. Four tetrasaccharides and one pentasaccharide were accessed by adopting a procedure of regioselective ring opening of a 4,6-O-naphthylidene protecting group followed by glycosylation using phenyl thioglycoside donors. The binding of the linear pentasaccharide with galectin-3 is also investigated by the determination of a co-crystal structure. The binding of the (1→4)-linked galactan to Gal-3 highlights the oligosaccharides of pectic galactan, which is abundant in the human diet, as putative Gal-3 ligands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa