Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Circ Res ; 135(2): 372-396, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963864

RESUMO

Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.


Assuntos
Insuficiência Cardíaca , Mitocôndrias Cardíacas , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Animais , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Metabolismo Energético , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia
2.
Circ Res ; 134(11): e150-e175, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781298

RESUMO

HIV type 1 (HIV-1) is the causative agent of AIDS. Since the start of the epidemic, HIV/AIDS has been responsible for ≈40 million deaths. Additionally, an estimated 39 million people are currently infected with the virus. HIV-1 primarily infects immune cells, such as CD4+ (cluster of differentiation 4+) T lymphocytes (T cells), and as a consequence, the number of CD4+ T cells progressively declines in people living with HIV. Within a span of ≈10 years, HIV-1 infection leads to the systemic failure of the immune system and progression to AIDS. Fortunately, potent antiviral therapy effectively controls HIV-1 infection and prevents AIDS-related deaths. The efficacy of the current antiviral therapy regimens has transformed the outcome of HIV/AIDS from a death sentence to a chronic disease with a prolonged lifespan of people living with HIV. However, antiviral therapy is not curative, is challenged by virus resistance, can be toxic, and, most importantly, requires lifelong adherence. Furthermore, the improved lifespan has resulted in an increased incidence of non-AIDS-related morbidities in people living with HIV including cardiovascular diseases, renal disease, liver disease, bone disease, cancer, and neurological conditions. In this review, we summarize the current state of knowledge of the cardiovascular comorbidities associated with HIV-1 infection, with a particular focus on hypertension. We also discuss the potential mechanisms known to drive HIV-1-associated hypertension and the knowledge gaps in our understanding of this comorbid condition. Finally, we suggest several directions of future research to better understand the factors, pathways, and mechanisms underlying HIV-1-associated hypertension in the post-antiviral therapy era.


Assuntos
Infecções por HIV , Hipertensão , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/complicações , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Fatores de Risco , HIV-1/patogenicidade , Animais
3.
J Cell Physiol ; : e31360, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962842

RESUMO

Junior faculty mentoring committees have important roles in ensuring that faculty thrive and adjust to their new positions and institutions. Here, we describe the purpose, structure, and benefits of junior faculty mentoring committees, which can be a powerful tool for early-career academic investigators in science, technology, engineering, mathematics, and medical (STEMM) fields. There is a paucity of information about what mentoring committees are, how to use them effectively, what areas they should evaluate, and how they can most successfully help junior faculty progress in their careers. This work offers guidance for both junior faculty mentees and mentoring committee members on how to best structure and utilize mentoring committees to promote junior faculty success. A better understanding of the intricacies of the mentoring committee will allow junior faculty members to self-advocate and will equip committee mentors with tools to ensure that junior faculty are successful in thriving in academia.

4.
J Cell Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595027

RESUMO

Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.

5.
J Cell Physiol ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462753

RESUMO

While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10-week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self-guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10-week program also seeks to offer an intensive research program that emulates graduate-level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award-winning posters.

6.
Am J Physiol Heart Circ Physiol ; 326(6): H1396-H1401, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578238

RESUMO

Given the growing interest in the role of zinc in the onset and progression of diseases, there is a crucial demand for reliable methods to modulate zinc homeostasis. Using a dietary approach, we provide validated strategies to alter whole-body zinc in mice, applicable across species. For confirmation of zinc status, animal growth rates as well as plasma and urine zinc levels were evaluated. The accessible and cost-effective methodology outlined will increase scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of diseases.NEW & NOTEWORTHY This methods paper details dietary approaches to alter zinc homeostasis in rodents and qualitative and quantitative methods to ensure the zinc status of experimental animals. The outlined accessible and cost-effective protocol will elevate scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of a multitude of health conditions and diseases.


Assuntos
Zinco , Zinco/deficiência , Zinco/metabolismo , Zinco/urina , Zinco/sangue , Animais , Reprodutibilidade dos Testes , Camundongos , Camundongos Endogâmicos C57BL , Homeostase , Masculino
7.
Am J Physiol Renal Physiol ; 324(5): F433-F445, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927118

RESUMO

Use of immunosuppressant calcineurin inhibitors (CNIs) is limited by irreversible kidney damage, hallmarked by renal fibrosis. CNIs directly damage many renal cell types. Given the diverse renal cell populations, additional targeted cell types and signaling mechanisms warrant further investigation. We hypothesized that fibroblasts contribute to CNI-induced renal fibrosis and propagate profibrotic effects via the transforming growth factor-ß (TGF-ß)/Smad signaling axis. To test this, kidney damage-resistant mice (C57BL/6) received tacrolimus (10 mg/kg) or vehicle for 21 days. Renal damage markers and signaling mediators were assessed. To investigate their role in renal damage, mouse renal fibroblasts were exposed to tacrolimus (1 nM) or vehicle for 24 h. Morphological and functional changes in addition to downstream signaling events were assessed. Tacrolimus-treated kidneys displayed evidence of renal fibrosis. Moreover, α-smooth muscle actin expression was significantly increased, suggesting the presence of fibroblast activation. TGF-ß receptor activation and downstream Smad2/3 signaling were also upregulated. Consistent with in vivo findings, tacrolimus-treated renal fibroblasts displayed a phenotypic switch known as fibroblast-to-myofibroblast transition (FMT), as α-smooth muscle actin, actin stress fibers, cell motility, and collagen type IV expression were significantly increased. These findings were accompanied by concomitant induction of TGF-ß signaling. Pharmacological inhibition of the downstream TGF-ß effector Smad3 attenuated tacrolimus-induced phenotypic changes. Collectively, these findings suggest that 1) tacrolimus inhibits the calcineurin/nuclear factor of activated T cells axis while inducing TGF-ß1 ligand secretion and receptor activation in renal fibroblasts; 2) aberrant TGF-ß receptor activation stimulates Smad-mediated production of myofibroblast markers, notable features of FMT; and 3) FMT contributes to extracellular matrix expansion in tacrolimus-induced renal fibrosis. These results incorporate renal fibroblasts into the growing list of CNI-targeted cell types and identify renal FMT as a process mediated via a TGF-ß-dependent mechanism.NEW & NOTEWORTHY Renal fibrosis, a detrimental feature of irreversible kidney damage, remains a sinister consequence of long-term calcineurin inhibitor (CNI) immunosuppressive therapy. Our study not only incorporates renal fibroblasts into the growing list of cell types negatively impacted by CNIs but also identifies renal fibroblast-to-myofibroblast transition as a process mediated via a TGF-ß-dependent mechanism. This insight will direct future studies investigating the feasibility of inhibiting TGF-ß signaling to maintain CNI-mediated immunosuppression while ultimately preserving kidney health.


Assuntos
Miofibroblastos , Insuficiência Renal , Tacrolimo , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Actinas/metabolismo , Inibidores de Calcineurina/farmacologia , Fibroblastos/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Tacrolimo/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal/patologia
8.
Am J Physiol Renal Physiol ; 320(3): F336-F341, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225712

RESUMO

Recently, research has directed its interests into identifying molecular pathways implicated in calcineurin inhibitor (CNI)-induced renal fibrosis. An emerging body of studies investigating calcineurin (CnA) activity has identified distinct actions of two main ubiquitously expressed isoforms: CnAα and CnAß. CNIs have the capacity to inhibit both of these CnA isoforms. In the kidney, CnAα is required for development, whereas CnAß predominantly modulates the immune response and glomerular hypertrophic signaling powered by activation of the transcription factor, nuclear factor of activated T lymphocytes (NFAT). Interestingly, data have shown that loss of CnAα activity contributes to the expression of profibrotic proteins in the kidney. Although this finding is of great significance, follow-up studies are needed to identify how loss of the CnAα isoform causes progressive renal damage. In addition, it is also necessary to identify downstream mediators of CnAα signaling that assist in upregulation of these profibrotic proteins. The goal of this review is to provide insight into strides taken to close the gap in elucidating CnA isoform-specific mechanisms of CNI-induced renal fibrosis. It is with hope that these contributions will lead to the development of newer generation CNIs that effectively blunt the immune response while circumventing extensive renal damage noted with long-term CNI use.


Assuntos
Inibidores de Calcineurina/efeitos adversos , Calcineurina/metabolismo , Imunossupressores/efeitos adversos , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Animais , Fibrose , Humanos , Rim/enzimologia , Rim/imunologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/imunologia , Nefropatias/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
9.
Am J Physiol Renal Physiol ; 320(5): F789-F798, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615888

RESUMO

Calcineurin inhibitors (CNIs) are vital immunosuppressive therapies in the management of inflammatory conditions. A long-term consequence is nephrotoxicity. In the kidneys, the primary, catalytic calcineurin (CnA) isoforms are CnAα and CnAß. Although the renal phenotype of CnAα-/- mice substantially mirrors CNI-induced nephrotoxicity, the mechanisms downstream of CnAα are poorly understood. Since NADPH oxidase-2 (Nox2)-derived oxidative damage has been implicated in CNI-induced nephrotoxicity, we hypothesized that CnAα inhibition drives Nox2 upregulation and promotes oxidative stress. To test the hypothesis, Nox2 regulation was investigated in kidneys from CnAα-/-, CnAß-/-, and wild-type (WT) littermate mice. To identify the downstream mediator of CnAα, nuclear factor of activated T cells (NFAT) and NF-κB regulation was examined. To test if Nox2 is transcriptionally regulated via a NF-κB pathway, CnAα-/- and WT renal fibroblasts were treated with the NF-κB inhibitor caffeic acid phenethyl ester. Our findings showed that cyclosporine A treatment induced Nox2 upregulation and oxidative stress. Furthermore, Nox2 upregulation and elevated ROS generation occurred only in CnAα-/- mice. In these mice, NF-κB but not NFAT activity was increased. In CnAα-/- renal fibroblasts, NF-κB inhibition prevented Nox2 upregulation and reactive oxygen species (ROS) generation. In conclusion, these findings indicate that 1) CnAα loss stimulates Nox2 upregulation, 2) NF-κB is a novel CnAα-regulated transcription factor, and 3) NF-κB mediates CnAα-induced Nox2 and ROS regulation. Our results demonstrate that CnAα plays a key role in Nox2 and ROS generation. Furthermore, these novel findings provide evidence of divergent CnA isoform signaling pathways. Finally, this study advocates for CnAα-sparing CNIs, ultimately circumventing the CNI nephrotoxicity.NEW & NOTEWORTHY A long-term consequence of calcineurin inhibitors (CNIs) is oxidative damage and nephrotoxicity. This study indicates that NF-κB is a novel calcineurin-regulated transcription factor that is activated with calcineurin inhibition, thereby driving oxidative damage in CNI nephropathy. These findings provide additional evidence of divergent calcineurin signaling pathways and suggest that selective CNIs could improve the long-term outcomes of patients by mitigating renal side effects.


Assuntos
Inibidores de Calcineurina/toxicidade , Calcineurina/metabolismo , Ciclosporina/toxicidade , Imunossupressores/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Animais , Calcineurina/deficiência , Calcineurina/genética , Linhagem Celular , Fibrose , Rim/enzimologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
10.
Photodermatol Photoimmunol Photomed ; 36(6): 433-440, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32786098

RESUMO

The use of the calcineurin inhibitors (CNI) cyclosporine (CsA) and tacrolimus remains a cornerstone in post-transplantation immunosuppression. Although these immunosuppressive agents have revolutionized the field of transplantation medicine, its increased skin cancer risk poses a major concern. A key contributor to this phenomenon is a reduced capacity to repair DNA damage caused by exposure to ultraviolet (UV) wavelengths of sunlight. CNIs decrease DNA repair by mechanisms that remain to be fully explored. Though CsA is known to decrease the abundance of key DNA repair enzymes, less is known about how tacrolimus yields this effect. CNIs hold the capacity to inhibit both of the main catalytic calcineurin isoforms (CnAα and CnAß). However, it is unknown which isoform regulates UV-induced DNA repair, which is the focus of this review. It is with hope that this insight spurs investigative efforts that conclusively addresses these gaps in knowledge. Additionally, this research also raises the possibility that newer CNIs can be developed that effectively blunt the immune response while mitigating the incidence of skin cancers with immunosuppression.


Assuntos
Inibidores de Calcineurina/efeitos adversos , Calcineurina , Reparo do DNA/efeitos dos fármacos , Neoplasias Cutâneas/induzido quimicamente , Animais , Inibidores de Calcineurina/farmacologia , Ciclosporina/efeitos adversos , Ciclosporina/farmacologia , Dano ao DNA , Humanos , Isoformas de Proteínas/efeitos dos fármacos , Tacrolimo/efeitos adversos , Tacrolimo/farmacologia , Raios Ultravioleta/efeitos adversos
13.
Am J Physiol Renal Physiol ; 316(4): F646-F653, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649891

RESUMO

Zn2+ deficiency (ZnD) is a common comorbidity of many chronic diseases. In these settings, ZnD exacerbates hypertension. Whether ZnD alone is sufficient to alter blood pressure (BP) is unknown. To explore the role of Zn2+ in BP regulation, adult mice were fed a Zn2+-adequate (ZnA) or a Zn2+-deficient (ZnD) diet. A subset of ZnD mice were either returned to the ZnA diet or treated with hydrochlorothiazide (HCTZ), a Na+-Cl- cotransporter (NCC) inhibitor. To reduce intracellular Zn2+ in vitro, mouse distal convoluted tubule cells were cultured in N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN, a Zn2+ chelator)- or vehicle (DMSO)-containing medium. To replete intracellular Zn2+, TPEN-exposed cells were then cultured in Zn2+-supplemented medium. ZnD promoted a biphasic BP response, characterized by episodes of high BP. BP increases were accompanied by reduced renal Na+ excretion and NCC upregulation. These effects were reversed in Zn2+-replete mice. Likewise, HCTZ stimulated natriuresis and reversed BP increases. In vitro, Zn2+ depletion increased NCC expression. Furthermore, TPEN promoted NCC surface localization and Na+ uptake activity. Zn2+ repletion reversed TPEN effects on NCC. These data indicate that 1) Zn2+ contributes to BP regulation via modulation of renal Na+ transport, 2) renal NCC mediates ZnD-induced hypertension, and 3) NCC is a Zn2+-regulated transporter that is upregulated with ZnD. This study links dysregulated renal Na+ handling to ZnD-induced hypertension. Furthermore, NCC is identified as a novel mechanism by which Zn2+ regulates BP. Understanding the mechanisms of ZnD-induced BP dysregulation may have an important therapeutic impact on hypertension.


Assuntos
Hipertensão/metabolismo , Rim/metabolismo , Sódio/metabolismo , Zinco/deficiência , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Quelantes/farmacologia , Dieta , Etilenodiaminas/farmacologia , Hidroclorotiazida/farmacologia , Hipertensão/etiologia , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Natriurese/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia
14.
Am J Physiol Cell Physiol ; 312(1): C47-C55, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806940

RESUMO

Zn2+ deficiency (ZnD) is comorbid with chronic kidney disease and worsens kidney complications. Oxidative stress is implicated in the detrimental effects of ZnD. However, the sources of oxidative stress continue to be identified. Since NADPH oxidases (Nox) are the primary enzymes that contribute to renal reactive oxygen species generation, this study's objective was to determine the role of these enzymes in ZnD-induced oxidative stress. We hypothesized that ZnD promotes NADPH oxidase upregulation, resulting in oxidative stress and kidney damage. To test this hypothesis, wild-type mice were pair-fed a ZnD or Zn2+-adequate diet. To further investigate the effects of Zn2+ bioavailability on NADPH oxidase regulation, mouse tubular epithelial cells were exposed to the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or vehicle followed by Zn2+ supplementation. We found that ZnD diet-fed mice develop microalbuminuria, electrolyte imbalance, and whole kidney hypertrophy. These markers of kidney damage are accompanied by elevated Nox2 expression and H2O2 levels. In mouse tubular epithelial cells, TPEN-induced ZnD stimulates H2O2 generation. In this in vitro model of ZnD, enhanced H2O2 generation is prevented by NADPH oxidase inhibition with diphenyleneiodonium. Specifically, TPEN promotes Nox2 expression and activation, which are reversed when intracellular Zn2+ levels are restored following Zn2+ supplementation. Finally, Nox2 knockdown by siRNA prevents TPEN-induced H2O2 generation and cellular hypertrophy in vitro. Together, these findings reveal that Nox2 is a Zn2+-regulated enzyme that mediates ZnD-induced oxidative stress and kidney hypertrophy. Understanding the specific mechanisms by which ZnD contributes to kidney damage may have an important impact on the treatment of chronic kidney disease.


Assuntos
Rim/enzimologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/patologia , Zinco/deficiência , Animais , Feminino , Rim/patologia , Masculino , Camundongos , Zinco/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L599-L608, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130258

RESUMO

Pulmonary hypertension (PH) is characterized by increased pulmonary vascular resistance, pulmonary vascular remodeling, and increased pulmonary vascular pressures that often result in right ventricular dysfunction, leading to right heart failure. Evidence suggests that reactive oxygen species (ROS) contribute to PH pathogenesis by altering pulmonary vascular cell proliferation and intracellular signaling pathways. However, the role of mitochondrial antioxidants and oxidant-derived stress signaling in the development of hypoxia-induced PH is largely unknown. Therefore, we examined the role of the major mitochondrial redox regulator thioredoxin 2 (Trx2). Levels of Trx2 mRNA and protein were examined in human pulmonary arterial endothelial cells (HPAECs) and smooth muscle cells (HPASMCs) exposed to hypoxia, a common stimulus for PH, for 72 h. Hypoxia decreased Trx2 mRNA and protein levels. In vitro overexpression of Trx2 reduced hypoxia-induced H2O2 production. The effects of increased Trx2 protein level were examined in transgenic mice expressing human Trx2 (TghTrx2) that were exposed to hypoxia (10% O2) for 3 wk. TghTrx2 mice exposed to hypoxia had exacerbated increases in right ventricular systolic pressures, right ventricular hypertrophy, and increased ROS in the lung tissue. Trx2 overexpression did not attenuate hypoxia-induced increases in Trx2 oxidation or Nox4 expression. Expression of a dominant negative C93S Trx2 mutant that mimics Trx2 oxidation exacerbated hypoxia-induced increases in HPASMC H2O2 levels and cell proliferation. In conclusion, Trx2 overexpression failed to attenuate hypoxia-induced HPASMC proliferation in vitro or hypoxia-induced PH in vivo. These findings indicate that strategies to enhance Trx2 expression are unlikely to exert therapeutic effects in PH pathogenesis.


Assuntos
Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
J Biol Chem ; 289(8): 4896-905, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24371139

RESUMO

Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aß is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAß(-/-)), we found that high glucose selectively activates CnAß, whereas CnAα is constitutively active. Furthermore, CnAß but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAß(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAß reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAß-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAß/NFAT pathway modulates Nox. These data reveal that the CnAß/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.


Assuntos
Calcineurina/metabolismo , Glucose/farmacologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Hipertrofia/patologia , Rim/patologia , Camundongos , Modelos Biológicos , NADPH Oxidase 2 , NADPH Oxidase 4 , Fatores de Transcrição NFATC/genética , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
J Cell Mol Med ; 18(12): 2361-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287476

RESUMO

Calcineurin is a calcium-dependent phosphatase that is involved in many cellular processes including hypertrophy. Inhibition or genetic loss of calcineurin blocks pathological cardiac hypertrophy and diabetic renal hypertrophy. However, calcineurin does not appear to be involved in physiological cardiac hypertrophy induced by exercise. The role of calcineurin in a compensatory, non-pathological model of renal hypertrophy has not been tested. Therefore, in this study, we examined activation of calcineurin and the effect of calcineurin inhibition or knockout on compensatory hypertrophy following uninephrectomy (UNX). UNX induces ~15% increase in the size of the remaining kidney; the data show no change in the generation of reactive oxygen species (ROS), Nox4 or transforming growth factor-ß expression confirming the model as one of compensatory hypertrophy. Next, analyses of the remaining kidney reveal that total calcineurin activity is increased, and, to a lesser extent, transcriptional activity of the calcineurin substrate nuclear factor of activated T cell is up-regulated following UNX. However, inhibition of calcineurin with cyclosporine failed to prevent compensatory renal hypertrophy. Likewise, hypertrophy was comparable to WT in mice lacking either isoform of the catalytic subunit of calcineurin (CnAα-/- or CnAß-/-). In conclusion, similar to its role in the heart, calcineurin is required for pathological but not compensatory renal hypertrophy. This separation of signalling pathways could therefore help further define key factors necessary for pathological hypertrophy including diabetic nephropathy.


Assuntos
Calcineurina/metabolismo , Rim/metabolismo , Rim/cirurgia , Nefrectomia/métodos , Animais , Western Blotting , Calcineurina/genética , Expressão Gênica , Hipertrofia/etiologia , Rim/patologia , Camundongos Knockout , Nefrectomia/efeitos adversos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
bioRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463970

RESUMO

Given the growing interest in the role of zinc in the onset and progression of diseases, there is a crucial demand for reliable methods to modulate zinc homeostasis. Using a dietary approach, we provide validated strategies to alter whole-body zinc in mice, applicable across species. For confirmation of zinc status, animal growth rates as well as plasma and urine zinc levels were evaluated. The accessible and cost-effective methodology outlined will increase scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of diseases.

19.
STAR Protoc ; 5(2): 102997, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748884

RESUMO

It is well-understood that the science, technology, engineering, and mathematics (STEM) fields have unique challenges that discourage recruiting and retaining underrepresented minorities. Research programs aimed at undergraduates have arisen as a critical mechanism for fostering innovation and addressing the challenges faced by underrepresented minorities. Here, we review various undergraduate research programs designed to provide exposure to undergraduates, with a focus on underrepresented minorities in STEM disciplines. We provide insight into selected programs' objectives, key features, potential limitations, and outcomes. We also offer recommendations for future improvements of each research program, particularly in the context of mentorship. These programs range from broad-reaching initiatives (e.g., Leadership Alliance) to more specific programs targeting underrepresented students. By offering a nuanced understanding of each program's structure, we seek to provide a brief overview of the landscape of diversity-focused STEM initiatives and a guide on how to run a research program effectively.


Assuntos
Matemática , Grupos Minoritários , Ciência , Estudantes , Tecnologia , Humanos , Grupos Minoritários/educação , Tecnologia/educação , Ciência/educação , Matemática/educação , Pesquisa/educação , Universidades , Engenharia/educação
20.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38979162

RESUMO

The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa