Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 140(11): 2354-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23615277

RESUMO

The zebrafish is a powerful genetic model that has only recently been used to dissect developmental pathways involved in oncogenesis. We hypothesized that operative pathways during embryogenesis would also be used for oncogenesis. In an effort to define RAS target genes during embryogenesis, gene expression was evaluated in Tg(hsp70-HRAS(G12V)) zebrafish embryos subjected to heat shock. dusp6 was activated by RAS, and this was used as the basis for a chemical genetic screen to identify small molecules that interfere with RAS signaling during embryogenesis. A KRAS(G12D)-induced zebrafish embryonal rhabdomyosarcoma was then used to assess the therapeutic effects of the small molecules. Two of these inhibitors, PD98059 and TPCK, had anti-tumor activity as single agents in both zebrafish embryonal rhabdomyosarcoma and a human cell line of rhabdomyosarcoma that harbored activated mutations in NRAS. PD98059 inhibited MEK1 whereas TPCK suppressed S6K1 activity; however, the combined treatment completely suppressed eIF4B phosphorylation and decreased translation initiation. Our work demonstrates that the activated pathways in RAS induction during embryogenesis are also important in oncogenesis and that inhibition of these pathways suppresses tumor growth.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Rabdomiossarcoma/patologia , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas ras/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Flavonoides/farmacologia , Humanos , MAP Quinase Quinase 1/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Tosilfenilalanil Clorometil Cetona/farmacologia , Transgenes , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Development ; 138(14): 2895-902, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21653610

RESUMO

Recent lineage-tracing studies have produced conflicting results about whether the epicardium is a source of cardiac muscle cells during heart development. Here, we examined the developmental potential of epicardial tissue in zebrafish during both embryonic development and injury-induced heart regeneration. We found that upstream sequences of the transcription factor gene tcf21 activated robust, epicardium-specific expression throughout development and regeneration. Cre recombinase-based, genetic fate-mapping of larval or adult tcf21(+) cells revealed contributions to perivascular cells, but not cardiomyocytes, during each form of cardiogenesis. Our findings indicate that natural epicardial fates are limited to non-myocardial cell types in zebrafish.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/embriologia , Morfogênese/fisiologia , Pericárdio/citologia , Regeneração/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Imunofluorescência , Morfogênese/genética , Pericárdio/metabolismo , Regeneração/genética
3.
Dev Biol ; 331(2): 270-80, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19445916

RESUMO

Appendage regeneration in salamanders and fish occurs through formation and maintenance of a mass of progenitor tissue called the blastema. A dedicated epidermis overlays the blastema and is required for its proliferation and patterning, yet this interaction is poorly understood. Here, we identified molecularly and functionally distinct compartments within the basal epidermal layer during zebrafish fin regeneration. Proximal epidermal subtypes express the transcription factor lef1 and the blastemal mitogen shh, while distal subtypes express the Fgf target gene pea3 and wnt5b, an inhibitor of blastemal proliferation. Ectopic overexpression of wnt5b reduced shh expression, while pharmacologic introduction of a Hh pathway agonist partially rescued blastemal proliferation during wnt5b overexpression. Loss- and gain-of-function approaches indicate that Fgf signaling promotes shh expression in proximal epidermis, while Fgf/Ras signaling restricts shh expression from distal epidermis through induction of pea3 expression and maintenance of wnt5b. Thus, the fin wound epidermis spatially confines Hh signaling through the activity of Fgf and Wnt pathways, impacting blastemal proliferation during regenerative outgrowth.


Assuntos
Epiderme/fisiologia , Extremidades/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Epiderme/crescimento & desenvolvimento , Extremidades/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regeneração , Transdução de Sinais , Peixe-Zebra/embriologia
4.
Curr Biol ; 25(16): 2177-83, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26234217

RESUMO

There are six members of the tubulin superfamily in eukaryotes. Alpha- and beta-tubulin form a heterodimer that polymerizes to form microtubules, and gamma-tubulin nucleates microtubules as a component of the gamma-tubulin ring complex. Alpha-, beta-, and gamma-tubulin are conserved in all eukaryotes. In contrast, delta- and epsilon-tubulin are conserved in many, but not all, eukaryotes and are associated with centrioles, although their molecular function is unclear. Zeta-tubulin is the sixth and final member of the tubulin superfamily and is largely uncharacterized. We find that zeta-, epsilon-, and delta-tubulin form an evolutionarily co-conserved module, the ZED module, that has been lost at several junctions in eukaryotic evolution and that zeta- and delta-tubulin are evolutionarily interchangeable. Humans lack zeta-tubulin but have delta-tubulin. In Xenopus multiciliated cells, zeta-tubulin is a component of the basal foot, a centriolar appendage that connects centrioles to the apical cytoskeleton, and co-localizes there with epsilon-tubulin. Depletion of zeta-tubulin results in disorganization of centriole distribution and polarity in multiciliated cells. In contrast with multiciliated cells, zeta-tubulin in cycling cells does not localize to centrioles and is associated with the TRiC/CCT cytoplasmic chaperone complex. We conclude that zeta-tubulin facilitates interactions between the centrioles and the apical cytoskeleton as a component of the basal foot in differentiated cells and propose that the ZED tubulins are important for centriole functionalization and orientation of centrioles with respect to cellular polarity axes.


Assuntos
Centríolos/metabolismo , Citoesqueleto/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiologia , Animais
5.
Development ; 135(18): 3063-70, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18701543

RESUMO

Adult teleost fish and urodele amphibians possess a spectacular ability to regenerate amputated appendages, based on formation and maintenance of progenitor tissue called a blastema. Although injury-induced, or facultative, appendage regeneration has been studied extensively, the extent to which homeostatic regeneration maintains these structures has not been examined. Here, we found that transgenic inhibition of Fgf receptors in uninjured zebrafish caused severe atrophy of all fin types within 2 months, revealing a requirement for Fgfs to preserve dermal bone, joint structures and supporting tissues. Appendage maintenance involved low-level expression of markers of blastema-based regeneration, focused in distal structures displaying recurrent cell death and proliferation. Conditional mutations in the ligand Fgf20a and the kinase Mps1, factors crucial for regeneration of amputated fins, also caused rapid, progressive loss of fin structures in otherwise uninjured animals. Our experiments reveal that the facultative machinery that regenerates amputated teleost fins also has a surprisingly vigorous role in homeostatic regeneration.


Assuntos
Extremidades/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Homeostase , Regeneração/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Amputação Cirúrgica , Animais , Animais Geneticamente Modificados , Fatores de Crescimento de Fibroblastos/genética , Hibridização In Situ , Modelos Biológicos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Regeneração/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Development ; 135(1): 183-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18045840

RESUMO

The heart maintains structural and functional integrity during years of continual contraction, but the extent to which new cell creation participates in cardiac homeostasis is unclear. Here, we assessed cellular and molecular mechanisms of cardiac homeostasis in zebrafish, which display indeterminate growth and possess an unusual capacity to regenerate after acute cardiac injury. Lowering fish density in the aquarium triggered rapid animal growth and robust cardiomyocyte proliferation throughout the adult ventricle, greater than that observed during slow animal growth or size maintenance. Rapid animal growth also induced strong expression of the embryonic epicardial markers raldh2 (aldh1a2) and tbx18 in adult epicardial tissue. Pulse-chase dye labeling experiments revealed that the epicardium recurrently contributes cells to the ventricular wall, indicating an active homeostatic process. Inhibition of signaling by Fibroblast growth factors (Fgfs) decreased this epicardial supplementation of the ventricular wall in growing zebrafish, and led to spontaneous ventricular scarring in animals maintaining cardiac size. Our results demonstrate that the adult zebrafish ventricle grows and is maintained by cardiomyocyte hyperplasia, and that epicardial cells are added to the ventricle in an Fgf-dependent fashion to support homeostasis.


Assuntos
Envelhecimento/fisiologia , Células Epiteliais , Coração/crescimento & desenvolvimento , Homeostase , Peixe-Zebra/crescimento & desenvolvimento , Animais , Células Epiteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hiperplasia/patologia , Miocárdio/metabolismo , Transdução de Sinais , Células-Tronco , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa