Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(23-24): 1657-1677, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819350

RESUMO

Senescence shapes embryonic development, plays a key role in aging, and is a critical barrier to cancer initiation, yet how senescence is regulated remains incompletely understood. TBX2 is an antisenescence T-box family transcription repressor implicated in embryonic development and cancer. However, the repertoire of TBX2 target genes, its cooperating partners, and how TBX2 promotes proliferation and senescence bypass are poorly understood. Here, using melanoma as a model, we show that TBX2 lies downstream from PI3K signaling and that TBX2 binds and is required for expression of E2F1, a key antisenescence cell cycle regulator. Remarkably, TBX2 binding in vivo is associated with CACGTG E-boxes, present in genes down-regulated by TBX2 depletion, more frequently than the consensus T-element DNA binding motif that is restricted to Tbx2 repressed genes. TBX2 is revealed to interact with a wide range of transcription factors and cofactors, including key components of the BCOR/PRC1.1 complex that are recruited by TBX2 to the E2F1 locus. Our results provide key insights into how PI3K signaling modulates TBX2 function in cancer to drive proliferation.


Assuntos
Melanoma , Proteínas com Domínio T , Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32531202

RESUMO

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genoma , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Processamento de Proteína Pós-Traducional , Neoplasias Cutâneas/genética , Acetilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Elementos Facilitadores Genéticos , Feminino , Xenoenxertos , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Peixe-Zebra
3.
Mol Cell ; 73(6): 1282-1291.e8, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792174

RESUMO

Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Fosforilases/metabolismo , Sistemas Toxina-Antitoxina , Tuberculose/microbiologia , Animais , Antibióticos Antituberculose/farmacologia , Antitoxinas/química , Antitoxinas/genética , Carga Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Viabilidade Microbiana , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , NAD/metabolismo , Fosforilases/química , Fosforilases/genética , Conformação Proteica , Sistemas Toxina-Antitoxina/genética , Tuberculose/tratamento farmacológico
4.
PLoS Pathog ; 18(8): e1010771, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960766

RESUMO

ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus. This prompted us to investigate the function of M. abscessus EsxU and EsxT in vitro and in vivo. Herein, we show that EsxU and EsxT are substrates of ESX-4 and form a stable 1:1 heterodimer that permeabilizes artificial membranes. While expression of esxU and esxT was up-regulated in M. abscessus-infected macrophages, their absence in an esxUT deletion mutant prevented phagosomal membrane disruption while maintaining M. abscessus in an unacidified phagosome. Unexpectedly, the esxUT deletion was associated with a hyper-virulent phenotype, characterised by increased bacterial loads and mortality in mouse and zebrafish infection models. Collectively, these results demonstrate that the presence of EsxU and EsxT dampens survival and persistence of M. abscessus during infection.


Assuntos
Mycobacterium abscessus , Mycobacterium marinum , Mycobacterium tuberculosis , Mycobacterium , Sistemas de Secreção Tipo VII , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Camundongos , Mycobacterium/genética , Mycobacterium abscessus/genética , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/genética , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo , Peixe-Zebra/metabolismo
5.
Traffic ; 22(5): 140-152, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33580581

RESUMO

Proteins composed of tetratricopeptide repeat (TPR) arrays belong to the α-solenoid tandem-repeat family that have unique properties in terms of their overall conformational flexibility and ability to bind to multiple protein ligands. The peroxisomal matrix protein import receptor Pex5 comprises two TPR triplets that recognize protein cargos with a specific C-terminal Peroxisomal Targeting Signal (PTS) 1 motif. Import of PTS1-containing protein cargos into peroxisomes through a transient pore is mainly driven by allosteric binding, coupling and release mechanisms, without a need for external energy. A very similar TPR architecture is found in the functionally unrelated TRIP8b, a regulator of the hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel. TRIP8b binds to the HCN ion channel via a C-terminal sequence motif that is nearly identical to the PTS1 motif of Pex5 receptor cargos. Pex5, Pex5-related Pex9, and TRIP8b also share a less conserved N-terminal domain. This domain provides a second protein cargo-binding site and plays a distinct role in allosteric coupling of initial cargo loading by PTS1 motif-mediated interactions and different downstream functional readouts. The data reviewed here highlight the overarching role of molecular allostery in driving the diverse functions of TPR array proteins, which could form a model for other α-solenoid tandem-repeat proteins involved in translocation processes across membranes.


Assuntos
Peroxissomos , Repetições de Tetratricopeptídeos , Proteínas de Transporte/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Ligação Proteica , Transporte Proteico
6.
J Biol Chem ; 298(6): 101985, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483450

RESUMO

Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.


Assuntos
Proteínas de Escherichia coli/química , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Proteínas Periplásmicas/química , Sítios de Ligação , Lectina de Ligação a Manose da Via do Complemento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/metabolismo , Subunidades Proteicas
7.
Biol Chem ; 404(2-3): 195-207, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36694962

RESUMO

Oxalyl-CoA synthetase from Saccharomyces cerevisiae is one of the most abundant peroxisomal proteins in yeast and hence has become a model to study peroxisomal translocation. It contains a C-terminal Peroxisome Targeting Signal 1, which however is partly dispensable, suggesting additional receptor bindings sites. To unravel any additional features that may contribute to its capacity to be recognized as peroxisomal target, we determined its assembly and overall architecture by an integrated structural biology approach, including X-ray crystallography, single particle cryo-electron microscopy and small angle X-ray scattering. Surprisingly, it assembles into mixture of concentration-dependent dimers, tetramers and hexamers by dimer self-association. Hexameric particles form an unprecedented asymmetric horseshoe-like arrangement, which considerably differs from symmetric hexameric assembly found in many other protein structures. A single mutation within the self-association interface is sufficient to abolish any higher-level oligomerization, resulting in a homogenous dimeric assembly. The small C-terminal domain of yeast Oxalyl-CoA synthetase is connected by a partly flexible hinge with the large N-terminal domain, which provides the sole basis for oligomeric assembly. Our data provide a basis to mechanistically study peroxisomal translocation of this target.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Microcorpos/química , Microcorpos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligases/análise , Ligases/metabolismo
8.
Biol Chem ; 404(2-3): 135-155, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36122347

RESUMO

Peroxisomes are organelles with vital functions in metabolism and their dysfunction is associated with human diseases. To fulfill their multiple roles, peroxisomes import nuclear-encoded matrix proteins, most carrying a peroxisomal targeting signal (PTS) 1. The receptor Pex5p recruits PTS1-proteins for import into peroxisomes; whether and how this process is posttranslationally regulated is unknown. Here, we identify 22 phosphorylation sites of Pex5p. Yeast cells expressing phospho-mimicking Pex5p-S507/523D (Pex5p2D) show decreased import of GFP with a PTS1. We show that the binding affinity between a PTS1-protein and Pex5p2D is reduced. An in vivo analysis of the effect of the phospho-mimicking mutant on PTS1-proteins revealed that import of most, but not all, cargos is affected. The physiological effect of the phosphomimetic mutations correlates with the binding affinity of the corresponding extended PTS1-sequences. Thus, we report a novel Pex5p phosphorylation-dependent mechanism for regulating PTS1-protein import into peroxisomes. In a broader view, this suggests that posttranslational modifications can function in fine-tuning the peroxisomal protein composition and, thus, cellular metabolism.


Assuntos
Peroxissomos , Receptores Citoplasmáticos e Nucleares , Humanos , Fosforilação , Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Transporte/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Proteico
9.
Mol Syst Biol ; 18(9): e11186, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36164978

RESUMO

Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


Assuntos
Peroxissomos , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(35): 21432-21440, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817524

RESUMO

Approximately half of eukaryotic proteins reside in organelles. To reach their correct destination, such proteins harbor targeting signals recognized by dedicated targeting pathways. It has been shown that differences in targeting signals alter the efficiency in which proteins are recognized and targeted. Since multiple proteins compete for any single pathway, such differences can affect the priority for which a protein is catered. However, to date the entire repertoire of proteins with targeting priority, and the mechanisms underlying it, have not been explored for any pathway. Here we developed a systematic tool to study targeting priority and used the Pex5-mediated targeting to yeast peroxisomes as a model. We titrated Pex5 out by expressing high levels of a Pex5-cargo protein and examined how the localization of each peroxisomal protein is affected. We found that while most known Pex5 cargo proteins were outcompeted, several cargo proteins were not affected, implying that they have high targeting priority. This priority group was dependent on metabolic conditions. We dissected the mechanism of priority for these proteins and suggest that targeting priority is governed by different parameters, including binding affinity of the targeting signal to the cargo factor, the number of binding interfaces to the cargo factor, and more. This approach can be modified to study targeting priority in various organelles, cell types, and organisms.


Assuntos
Sinais de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Estudo de Prova de Conceito , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859757

RESUMO

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

12.
J Struct Biol ; 214(4): 107923, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410652

RESUMO

Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.


Assuntos
Fator de von Willebrand , Fator de von Willebrand/genética
13.
Nucleic Acids Res ; 48(2): 934-948, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31777941

RESUMO

Interrupted dimeric coiled coil segments are found in a broad range of proteins and generally confer selective functional properties such as binding to specific ligands. However, there is only one documented case of a basic-helix-loop-helix leucine zipper transcription factor-microphthalmia-associated transcription factor (MITF)-in which an insertion of a three-residue stammer serves as a determinant of conditional partner selectivity. To unravel the molecular principles of this selectivity, we have analyzed the high-resolution structures of stammer-containing MITF and an engineered stammer-less MITF variant, which comprises an uninterrupted symmetric coiled coil. Despite this fundamental difference, both MITF structures reveal identical flanking in-phase coiled coil arrangements, gained by helical over-winding and local asymmetry in wild-type MITF across the stammer region. These conserved structural properties allow the maintenance of a proper functional readout in terms of nuclear localization and binding to specific DNA-response motifs regardless of the presence of the stammer. By contrast, MITF heterodimer formation with other bHLH-Zip transcription factors is only permissive when both factors contain either the same type of inserted stammer or no insert. Our data illustrate a unique principle of conditional partner selectivity within the wide arsenal of transcription factors with specific partner-dependent functional readouts.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Núcleo Celular/química , Fator de Transcrição Associado à Microftalmia/química , Conformação Proteica , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Ligantes , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Ligação Proteica , Domínios Proteicos/genética , Multimerização Proteica
14.
Kidney Int ; 100(2): 281-288, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940110

RESUMO

Over the past decades, structural biology methods such as X-ray crystallography and cryo-electron microscopy have been increasingly used to study protein functions, molecular interactions, physiological processes, and disease mechanisms. This review outlines a selection of structural biology methods, highlights recent examples of how structural analyses have contributed to a more profound understanding of the machinery of life, and gives a perspective on how these methods can be applied to investigate functions of kidney molecules and pathogenic mechanisms of renal diseases.


Assuntos
Rim , Proteínas , Biologia , Microscopia Crioeletrônica , Cristalografia por Raios X
15.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34224347

RESUMO

Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis, to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis. In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/genética , Parede Celular/genética , Parede Celular/metabolismo , Humanos , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/patogenicidade , Sistemas de Secreção Tipo VII/genética , Virulência
16.
Blood ; 133(4): 356-365, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30366922

RESUMO

The frequent von Willebrand factor (VWF) variant p.Phe2561Tyr is located within the C4 domain, which also harbors the platelet GPIIb/IIIa-binding RGD sequence. To investigate its potential effect on hemostasis, we genotyped 865 patients with coronary artery disease (CAD), 915 with myocardial infarction (MI), and 417 control patients (Ludwigshafen Risk and Cardiovascular Health Study) and performed functional studies of this variant. A univariate analysis of male and female carriers of the Tyr2561 allele aged 55 years or younger revealed an elevated risk for repeated MI (odds ratio, 2.53; 95% confidence interval [CI], 1.07-5.98). The odds ratio was even higher in females aged 55 years or younger, at a value of 5.93 (95% CI, 1.12-31.24). Cone and plate aggregometry showed that compared with Phe2561, Tyr2561 was associated with increased platelet aggregate size both in probands' blood and with the recombinant variants. Microfluidic assays revealed that the critical shear rate for inducing aggregate formation was decreased to 50% by Tyr2561 compared with Phe2561. Differences in C-domain circular dichroism spectra resulting from Tyr2561 suggest an increased shear sensitivity of VWF as a result of altered association of the C domains that disrupts the normal dimer interface. In summary, our data emphasize the functional effect of the VWF C4 domain for VWF-mediated platelet aggregation in a shear-dependent manner and provide the first evidence that a functional variant of VWF plays a role in arterial thromboembolism.


Assuntos
Alelos , Mutação com Ganho de Função/genética , Predisposição Genética para Doença , Infarto do Miocárdio/genética , Tirosina/genética , Fator de von Willebrand/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica , Fatores de Risco , Fator de von Willebrand/química
17.
Blood ; 133(4): 366-376, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30305279

RESUMO

Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.


Assuntos
Plaquetas/metabolismo , Integrinas/metabolismo , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Dissulfetos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Soluções , Relação Estrutura-Atividade
18.
Genes Dev ; 26(23): 2647-58, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23207919

RESUMO

Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and an important oncogene in melanoma. MITF heterodimeric assembly with related basic helix-loop-helix leucine zipper transcription factors is highly restricted, and its binding profile to cognate DNA sequences is distinct. Here, we determined the crystal structure of MITF in its apo conformation and in the presence of two related DNA response elements, the E-box and M-box. In addition, we investigated mouse and human Mitf mutations to dissect the functional significance of structural features. Owing to an unusual three-residue shift in the leucine zipper register, the MITF homodimer shows a marked kink in one of the two zipper helices to allow an out-of-register assembly. Removal of this insertion relieves restricted heterodimerization by MITF and permits assembly with the transcription factor MAX. Binding of MITF to the M-box motif is mediated by an unusual nonpolar interaction by Ile212, a residue that is mutated in mice and humans with Waardenburg syndrome. As several related transcription factors have low affinity for the M-box sequence, our analysis unravels how these proteins discriminate between similar target sequences. Our data provide a rational basis for targeting MITF in the treatment of important hereditary diseases and cancer.


Assuntos
Zíper de Leucina , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Elementos Facilitadores Genéticos/genética , Humanos , Zíper de Leucina/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Síndrome de Waardenburg/genética
20.
J Cell Sci ; 130(9): 1675-1687, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325759

RESUMO

Tail-anchored (TA) proteins contain a single transmembrane domain (TMD) at the C-terminus that anchors them to the membranes of organelles where they mediate critical cellular processes. Accordingly, mutations in genes encoding TA proteins have been identified in a number of severe inherited disorders. Despite the importance of correctly targeting a TA protein to its appropriate membrane, the mechanisms and signals involved are not fully understood. In this study, we identify additional peroxisomal TA proteins, discover more proteins that are present on multiple organelles, and reveal that a combination of TMD hydrophobicity and tail charge determines targeting to distinct organelle locations in mammals. Specifically, an increase in tail charge can override a hydrophobic TMD signal and re-direct a protein from the ER to peroxisomes or mitochondria and vice versa. We show that subtle changes in those parameters can shift TA proteins between organelles, explaining why peroxisomes and mitochondria have many of the same TA proteins. This enabled us to associate characteristic physicochemical parameters in TA proteins with particular organelle groups. Using this classification allowed successful prediction of the location of uncharacterized TA proteins for the first time.


Assuntos
Compartimento Celular , Mamíferos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Peroxissomos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa